19,364 research outputs found

    Transfer Meets Hybrid: A Synthetic Approach for Cross-Domain Collaborative Filtering with Text

    Full text link
    Collaborative filtering (CF) is the key technique for recommender systems (RSs). CF exploits user-item behavior interactions (e.g., clicks) only and hence suffers from the data sparsity issue. One research thread is to integrate auxiliary information such as product reviews and news titles, leading to hybrid filtering methods. Another thread is to transfer knowledge from other source domains such as improving the movie recommendation with the knowledge from the book domain, leading to transfer learning methods. In real-world life, no single service can satisfy a user's all information needs. Thus it motivates us to exploit both auxiliary and source information for RSs in this paper. We propose a novel neural model to smoothly enable Transfer Meeting Hybrid (TMH) methods for cross-domain recommendation with unstructured text in an end-to-end manner. TMH attentively extracts useful content from unstructured text via a memory module and selectively transfers knowledge from a source domain via a transfer network. On two real-world datasets, TMH shows better performance in terms of three ranking metrics by comparing with various baselines. We conduct thorough analyses to understand how the text content and transferred knowledge help the proposed model.Comment: 11 pages, 7 figures, a full version for the WWW 2019 short pape

    Temporal Learning and Sequence Modeling for a Job Recommender System

    Full text link
    We present our solution to the job recommendation task for RecSys Challenge 2016. The main contribution of our work is to combine temporal learning with sequence modeling to capture complex user-item activity patterns to improve job recommendations. First, we propose a time-based ranking model applied to historical observations and a hybrid matrix factorization over time re-weighted interactions. Second, we exploit sequence properties in user-items activities and develop a RNN-based recommendation model. Our solution achieved 5th^{th} place in the challenge among more than 100 participants. Notably, the strong performance of our RNN approach shows a promising new direction in employing sequence modeling for recommendation systems.Comment: a shorter version in proceedings of RecSys Challenge 201

    Hierarchical Attention Network for Visually-aware Food Recommendation

    Full text link
    Food recommender systems play an important role in assisting users to identify the desired food to eat. Deciding what food to eat is a complex and multi-faceted process, which is influenced by many factors such as the ingredients, appearance of the recipe, the user's personal preference on food, and various contexts like what had been eaten in the past meals. In this work, we formulate the food recommendation problem as predicting user preference on recipes based on three key factors that determine a user's choice on food, namely, 1) the user's (and other users') history; 2) the ingredients of a recipe; and 3) the descriptive image of a recipe. To address this challenging problem, we develop a dedicated neural network based solution Hierarchical Attention based Food Recommendation (HAFR) which is capable of: 1) capturing the collaborative filtering effect like what similar users tend to eat; 2) inferring a user's preference at the ingredient level; and 3) learning user preference from the recipe's visual images. To evaluate our proposed method, we construct a large-scale dataset consisting of millions of ratings from AllRecipes.com. Extensive experiments show that our method outperforms several competing recommender solutions like Factorization Machine and Visual Bayesian Personalized Ranking with an average improvement of 12%, offering promising results in predicting user preference for food. Codes and dataset will be released upon acceptance

    Neural Collaborative Ranking

    Full text link
    Recommender systems are aimed at generating a personalized ranked list of items that an end user might be interested in. With the unprecedented success of deep learning in computer vision and speech recognition, recently it has been a hot topic to bridge the gap between recommender systems and deep neural network. And deep learning methods have been shown to achieve state-of-the-art on many recommendation tasks. For example, a recent model, NeuMF, first projects users and items into some shared low-dimensional latent feature space, and then employs neural nets to model the interaction between the user and item latent features to obtain state-of-the-art performance on the recommendation tasks. NeuMF assumes that the non-interacted items are inherent negative and uses negative sampling to relax this assumption. In this paper, we examine an alternative approach which does not assume that the non-interacted items are necessarily negative, just that they are less preferred than interacted items. Specifically, we develop a new classification strategy based on the widely used pairwise ranking assumption. We combine our classification strategy with the recently proposed neural collaborative filtering framework, and propose a general collaborative ranking framework called Neural Network based Collaborative Ranking (NCR). We resort to a neural network architecture to model a user's pairwise preference between items, with the belief that neural network will effectively capture the latent structure of latent factors. The experimental results on two real-world datasets show the superior performance of our models in comparison with several state-of-the-art approaches.Comment: Proceedings of the 2018 ACM on Conference on Information and Knowledge Managemen

    Telepath: Understanding Users from a Human Vision Perspective in Large-Scale Recommender Systems

    Full text link
    Designing an e-commerce recommender system that serves hundreds of millions of active users is a daunting challenge. From a human vision perspective, there're two key factors that affect users' behaviors: items' attractiveness and their matching degree with users' interests. This paper proposes Telepath, a vision-based bionic recommender system model, which understands users from such perspective. Telepath is a combination of a convolutional neural network (CNN), a recurrent neural network (RNN) and deep neural networks (DNNs). Its CNN subnetwork simulates the human vision system to extract key visual signals of items' attractiveness and generate corresponding activations. Its RNN and DNN subnetworks simulate cerebral cortex to understand users' interest based on the activations generated from browsed items. In practice, the Telepath model has been launched to JD's recommender system and advertising system. For one of the major item recommendation blocks on the JD app, click-through rate (CTR), gross merchandise value (GMV) and orders have increased 1.59%, 8.16% and 8.71% respectively. For several major ads publishers of JD demand-side platform, CTR, GMV and return on investment have increased 6.58%, 61.72% and 65.57% respectively by the first launch, and further increased 2.95%, 41.75% and 41.37% respectively by the second launch.Comment: 8 pages, 11 figures, 1 tabl
    corecore