1,030 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Power Efficient MISO Beamforming for Secure Layered Transmission

    Full text link
    This paper studies secure layered video transmission in a multiuser multiple-input single-output (MISO) beamforming downlink communication system. The power allocation algorithm design is formulated as a non-convex optimization problem for minimizing the total transmit power while guaranteeing a minimum received signal-to-interference-plus-noise ratio (SINR) at the desired receiver. In particular, the proposed problem formulation takes into account the self-protecting architecture of layered transmission and artificial noise generation to prevent potential information eavesdropping. A semi-definite programming (SDP) relaxation based power allocation algorithm is proposed to obtain an upper bound solution. A sufficient condition for the global optimal solution is examined to reveal the tightness of the upper bound solution. Subsequently, two suboptimal power allocation schemes with low computational complexity are proposed for enabling secure layered video transmission. Simulation results demonstrate significant transmit power savings achieved by the proposed algorithms and layered transmission compared to the baseline schemes.Comment: Accepted for presentation at the IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 201

    Robust Secure Transmission in MISO Channels Based on Worst-Case Optimization

    Full text link
    This paper studies robust transmission schemes for multiple-input single-output (MISO) wiretap channels. Both the cases of direct transmission and cooperative jamming with a helper are investigated with imperfect channel state information (CSI) for the eavesdropper links. Robust transmit covariance matrices are obtained based on worst-case secrecy rate maximization, under both individual and global power constraints. For the case of an individual power constraint, we show that the non-convex maximin optimization problem can be transformed into a quasiconvex problem that can be efficiently solved with existing methods. For a global power constraint, the joint optimization of the transmit covariance matrices and power allocation between the source and the helper is studied via geometric programming. We also study the robust wiretap transmission problem for the case with a quality-of-service constraint at the legitimate receiver. Numerical results show the advantage of the proposed robust design. In particular, for the global power constraint scenario, although cooperative jamming is not necessary for optimal transmission with perfect eavesdropper's CSI, we show that robust jamming support can increase the worst-case secrecy rate and lower the signal to interference-plus-noise ratio at Eve in the presence of channel mismatches between the transmitters and the eavesdropper.Comment: 28 pages, 5 figure

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication
    • …
    corecore