32 research outputs found

    Dynamics of interconnected systems with pulse frequency modulators

    Get PDF
    The objective of this dissertation is to study the dynamics of systems consisting of interconnections of an arbitrary number of complete-reset pulse frequency modulators (CRPFM\u27s) and linear dynamical subsystems (in general, time-varying, lumped and/or distributed). CRPFM, which represents a generalization of several types of pulse frequency modulators (PFM\u27s), consists of two basic components; a multi-input dynamic element, called the timing-filter (TF) and a threshold device (TD). Whenever the output of the TF reaches a given threshold value the TD generates an impulse and, at the same time, resets all the states of the TF to zero. This dissertation is devoted to two basic aspects of system motion, namely stability of the equilibrium and periodic operation. Stability is defined in terms of finiteness of the number of pulses emitted by all modulators. This definition of finite-pulse stability (FPS) is related to L1 ∩ LP output stability and implies finite energy expended. An improved Lyapunov-like approach is presented which, however, is difficult to employ for higher order systems. A direct criterion for FPS is given which is not only easy to apply, but also provides bounds on the number of pulses emitted by each modulator. A comparison is presented between these criteria and previous stability conditions available for special classes of CRPFM systems (e.g., systems with integral PFM or relaxation PFM). In representative examples, the direct FPS criterion yields comparable (or better) stability regions (of parameters). The second part is devoted to the study of the basic aspects of periodic behavior. For multi-modulator PFM systems, the usual concept of periodicity (or almost periodicty) is not meaningful. Therefore, a weaker concept, that of εe-near periodicity is introduced. This notion involves an observation interval (which is usually finite) and a measure of desired accuracy or observation accuracy . Certain necessary and sufficient conditions for the existence of εe-near periodic motion are presented. For an IPFM system with a time-invariant linear part, a matrix relationship is given, which relates the period and the net number of pulses emitted by each modulator over that period to the system parameters. Periodic behavior is further investigated on a time-discretized approximation of the CRPFM system which reduces to a system containing ideal delays, summing junctions and threshold elements. However, it is still difficult to obtain analytical results from the resulting (nonlinear) difference equations (except for very short periods of oscillation); nevertheless, these equations can be linearized by introduction of extra variables, using Fukunaga\u27s method for nonlinear switching nets. Therefore, classical linear techniques (based on characteristic polynomials and eigenvectors) can be used to obtain information about periodic motion. This approach also applies to McCulloch Pitts type of neural nets and extends existing results on periodic behavior in such networks

    Models for time series prediction based on neural networks. Case study : GLP sales prediction from ANCAP.

    Get PDF
    A time series is a sequence of real values that can be considered as observations of a certain system. In this work, we are interested in time series coming from dynamical systems. Such systems can be sometimes described by a set of equations that model the underlying mechanism from where the samples come. However, in several real systems, those equations are unknown, and the only information available is a set of temporal measures, that constitute a time series. On the other hand, by practical reasons it is usually required to have a prediction, v.g. to know the (approximated) value of the series in a future instant t. The goal of this thesis is to solve one of such real-world prediction problem: given historical data related with the lique ed bottled propane gas sales, predict the future gas sales, as accurately as possible. This time series prediction problem is addressed by means of neural networks, using both (dynamic) reconstruction and prediction. The problem of to dynamically reconstruct the original system consists in building a model that captures certain characteristics of it in order to have a correspondence between the long-term behavior of the model and of the system. The networks design process is basically guided by three ingredients. The dimensionality of the problem is explored by our rst ingredient, the Takens-Mañé's theorem. By means of this theorem, the optimal dimension of the (neural) network input can be investigated. Our second ingredient is a strong theorem: neural networks with a single hidden layer are universal approximators. As the third ingredient, we faced the search of the optimal size of the hidden layer by means of genetic algorithms, used to suggest the number of hidden neurons that maximizes a target tness function (related with prediction errors). These algorithms are also used to nd the most in uential networks inputs in some cases. The determination of the hidden layer size is a central (and hard) problem in the determination of the network topology. This thesis includes a state of the art of neural networks design for time series prediction, including related topics such as dynamical systems, universal approximators, gradient-descent searches and variations, as well as meta-heuristics. The survey of the related literature is intended to be extensive, for both printed material and electronic format, in order to have a landscape of the main aspects for the state of the art in time series prediction using neural networks. The material found was sometimes extremely redundant (as in the case of the back-propagation algorithm and its improvements) and scarce in others (memory structures or estimation of the signal subspace dimension in the stochastic case). The surveyed literature includes classical research works ([27], [50], [52]) as well as more recent ones ([79] , [16] or [82]), which pretends to be another contribution of this thesis. Special attention is given to the available software tools for neural networks design and time series processing. After a review of the available software packages, the most promising computational tools for both approaches are discussed. As a result, a whole framework based on mature software tools was set and used. In order to work with such dynamical systems, software intended speci cally for the analysis and processing of time series was employed, and then chaotic series were part of our focus. Since not all randomness is attributable to chaos, in order to characterize the dynamical system generating the time series, an exploration of chaotic-stochastic systems is required, as well as network models to predict a time series associated to one of them. Here we pretend to show how the knowledge of the domain, something extensively treated in the bibliography, can be someway sophisticated (such as the Lyapunov's spectrum for a series or the embedding dimension). In order to model the dynamical system generated by the time series we used the state-space model, so the time series prediction was translated in the prediction of the next system state. This state-space model, together with the delays method (delayed coordinates) have practical importance for the development of this work, speci cally, the design of the input layer in some networks (multi-layer perceptrons - MLPs) and other parameters (taps in the TFLNs). Additionally, the rest of the network components where determined in many cases through procedures traditionally used in neural networks : genetic algorithms. The criteria of model (network) selection are discussed and a trade-o between performance and network complexity is further explored, inspired in the Rissanen's minimum description length and its estimation given by the chosen software. Regarding the employed network models, the network topologies suggested from the literature as adequate for the prediction are used (TLFNs and recurrent networks) together with MLPs (a classic of arti cial neural networks) and networks committees. The e ectiveness of each method is con rmed for the proposed prediction problem. Network committees, where the predictions are a naive convex combination of predictions from individual networks, are also extensively used. The need of criteria to compare the behaviors of the model and of the real system, in the long run, for a dynamic stochastic systems, is presented and two alternatives are commented. The obtained results proof the existence of a solution to the problem of learning of the dependence Input ! Output . We also conjecture that the system is dynamic-stochastic but not chaotic, because we only have a realization of the random process corresponding to the sales. As a non-chaotic system, the mean of the predictions of the sales would improve as the available data increase, although the probability of a prediction with a big error is always non-null due to the randomness present. This solution is found in a constructive and exhaustive way. The exhaustiveness can be deduced from the next ve statements: the design of a neural network requires knowing the input and output dimension,the number of the hidden layers and of the neurons in each of them. the use of the Takens-Mañé's theorem allows to derive the dimension of the input data by theorems such as the Kolmogorov's and Cybenko's ones the use of multi-layer perceptrons with only one hidden layer is justi ed so several of such models were tested the number of neurons in the hidden layer is determined many times heuristically using genetic algorithms a neuron in the output gives the desired prediction As we said, two tasks are carried out: the development of a time series prediction model and the analysis of a feasible model for the dynamic reconstruction of the system. With the best predictive model, obtained by an ensemble of two networks, an acceptable average error was obtained when the week to be predicted is not adjacent to the training set (7.04% for the week 46/2011). We believe that these results are acceptable provided the quantity of information available, and represent an additional validation that neural networks are useful for time series prediction coming from dynamical systems, no matter whether they are stochastic or not. Finally, the results con rmed several already known facts (such as that adding noise to the inputs and outputs of the training values can improve the results; that recurrent networks trained with the back-propagation algorithm don't have the problem of vanishing gradients in short periods and that the use of committees - which can be seen as a very basic of distributed arti cial intelligence - allows to improve signi cantly the predictions).Una serie temporal es una secuencia de valores reales que pueden ser considerados como observaciones de un cierto sistema. En este trabajo, estamos interesados en series temporales provenientes de sistemas dinámicos. Tales sistemas pueden ser algunas veces descriptos por un conjunto de ecuaciones que modelan el mecanismo subyacente que genera las muestras. sin embargo, en muchos sistemas reales, esas ecuaciones son desconocidas, y la única información disponible es un conjunto de medidas en el tiempo, que constituyen la serie temporal. Por otra parte, por razones prácticas es generalmente requerida una predicción, es decir, conocer el valor (aproximado) de la serie en un instante futuro t. La meta de esta tesis es resolver un problema de predicción del mundo real: dados los datos históricos relacionados con las ventas de gas propano licuado, predecir las ventas futuras, tan aproximadamente como sea posible. Este problema de predicción de series temporales es abordado por medio de redes neuronales, tanto para la reconstrucción como para la predicción. El problema de reconstruir dinámicamente el sistema original consiste en construir un modelo que capture ciertas características de él de forma de tener una correspondencia entre el comportamiento a largo plazo del modelo y del sistema. El proceso de diseño de las redes es guiado básicamente por tres ingredientes. La dimensionalidad del problema es explorada por nuestro primer ingrediente, el teorema de Takens-Mañé. Por medio de este teorema, la dimensión óptima de la entrada de la red neuronal puede ser investigada. Nuestro segundo ingrediente es un teorema muy fuerte: las redes neuronales con una sola capa oculta son un aproximador universal. Como tercer ingrediente, encaramos la búsqueda del tamaño oculta de la capa oculta por medio de algoritmos genéticos, usados para sugerir el número de neuronas ocultas que maximizan una función objetivo (relacionada con los errores de predicción). Estos algoritmos se usan además para encontrar las entradas a la red que influyen más en la salida en algunos casos. La determinación del tamaño de la capa oculta es un problema central (y duro) en la determinación de la topología de la red. Esta tesis incluye un estado del arte del diseño de redes neuronales para la predicción de series temporales, incluyendo tópicos relacionados tales como sistemas dinámicos, aproximadores universales, búsquedas basadas en el gradiente y sus variaciones, así como meta-heurísticas. El relevamiento de la literatura relacionada busca ser extenso, para tanto el material impreso como para el que esta en formato electrónico, de forma de tener un panorama de los principales aspectos del estado del arte en la predicción de series temporales usando redes neuronales. El material hallado fue algunas veces extremadamente redundante (como en el caso del algoritmo de retropropagación y sus mejoras) y escaso en otros (estructuras de memoria o estimación de la dimensión del sub-espacio de señal en el caso estocástico). La literatura consultada incluye trabajos de investigación clásicos ( ([27], [50], [52])' así como de los más reciente ([79] , [16] or [82]). Se presta especial atención a las herramientas de software disponibles para el diseño de redes neuronales y el procesamiento de series temporales. Luego de una revisión de los paquetes de software disponibles, las herramientas más promisiorias para ambas tareas son discutidas. Como resultado, un entorno de trabajo completo basado en herramientas de software maduras fue definido y usado. Para trabajar con los mencionados sistemas dinámicos, software especializado en el análisis y proceso de las series temporales fue empleado, y entonces las series caóticas fueron estudiadas. Ya que no toda la aleatoriedad es atribuible al caos, para caracterizar al sistema dinámico que genera la serie temporal se requiere una exploración de los sistemas caóticos-estocásticos, así como de los modelos de red para predecir una serie temporal asociada a uno de ellos. Aquí se pretende mostrar cómo el conocimiento del dominio, algo extensamente tratado en la literatura, puede ser de alguna manera sofisticado (tal como el espectro de Lyapunov de la serie o la dimensión del sub-espacio de señal). Para modelar el sistema dinámico generado por la serie temporal se usa el modelo de espacio de estados, por lo que la predicción de la serie temporal es traducida en la predicción del siguiente estado del sistema. Este modelo de espacio de estados, junto con el método de los delays (coordenadas demoradas) tiene importancia práctica en el desarrollo de este trabajo, específicamente, en el diseño de la capa de entrada en algunas redes (los perceptrones multicapa) y otros parámetros (los taps de las redes TLFN). Adicionalmente, el resto de los componentes de la red con determinados en varios casos a través de procedimientos tradicionalmente usados en las redes neuronales: los algoritmos genéticos. Los criterios para la selección de modelo (red) son discutidos y un balance entre performance y complejidad de la red es explorado luego, inspirado en el minimum description length de Rissanen y su estimación dada por el software elegido. Con respecto a los modelos de red empleados, las topologóas de sugeridas en la literatura como adecuadas para la predicción son usadas (TLFNs y redes recurrentes) junto con perceptrones multicapa (un clásico de las redes neuronales) y comités de redes. La efectividad de cada método es confirmada por el problema de predicción propuesto. Los comités de redes, donde las predicciones son una combinación convexa de las predicciones dadas por las redes individuales, son también usados extensamente. La necesidad de criterios para comparar el comportamiento del modelo con el del sistema real, a largo plazo, para un sistema dinámico estocástico, es presentada y dos alternativas son comentadas. Los resultados obtenidos prueban la existencia de una solución al problema del aprendizaje de la dependencia Entrada - Salida . Conjeturamos además que el sistema generador de serie de las ventas es dinámico-estocástico pero no caótico, ya que sólo tenemos una realización del proceso aleatorio correspondiente a las ventas. Al ser un sistema no caótico, la media de las predicciones de las ventas debería mejorar a medida que los datos disponibles aumentan, aunque la probabilidad de una predicción con un gran error es siempre no nula debido a la aleatoriedad presente. Esta solución es encontrada en una forma constructiva y exhaustiva. La exhaustividad puede deducirse de las siguiente cinco afirmaciones : el diseño de una red neuronal requiere conocer la dimensión de la entrada y de la salida, el número de capas ocultas y las neuronas en cada una de ellas el uso del teorema de takens-Mañé permite derivar la dimensión de la entrada por teoremas tales como los de Kolmogorov y Cybenko el uso de perceptrones con solo una capa oculta es justificado, por lo que varios de tales modelos son probados el número de neuronas en la capa oculta es determinada varias veces heurísticamente a través de algoritmos genéticos una sola neurona de salida da la predicción deseada. Como se dijo, dos tareas son llevadas a cabo: el desarrollo de un modelo para la predicción de la serie temporal y el análisis de un modelo factible para la reconstrucción dinámica del sistema. Con el mejor modelo predictivo, obtenido por el comité de dos redes se logró obtener un error aceptable en la predicción de una semana no contigua al conjunto de entrenamiento (7.04% para la semana 46/2011). Creemos que este es un resultado aceptable dada la cantidad de información disponible y representa una validación adicional de que las redes neuronales son útiles para la predicción de series temporales provenientes de sistemas dinámicos, sin importar si son estocásticos o no. Finalmente, los resultados experimentales confirmaron algunos hechos ya conocidos (tales como que agregar ruido a los datos de entrada y de salida de los valores de entrenamiento puede mejorar los resultados: que las redes recurrentes entrenadas con el algoritmo de retropropagación no presentan el problema del gradiente evanescente en periodos cortos y que el uso de de comités - que puede ser visto como una forma muy básica de inteligencia artificial distribuida - permite mejorar significativamente las predicciones)

    Newark College of Engineering Graduate Programs 1973-74 Academic Year

    Get PDF
    https://digitalcommons.njit.edu/coursecatalogs/1022/thumbnail.jp

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Graduate Division Programs for the Academic Year 1976-77 New Jersey Institute of Technology

    Get PDF
    https://digitalcommons.njit.edu/coursecatalogs/1018/thumbnail.jp

    Trajectory generation for autonomous unmanned aircraft using inverse dynamics

    Get PDF
    The problem addressed in this research is the in-flight generation of trajectories for autonomous unmanned aircraft, which requires a method of generating pseudo-optimal trajectories in near-real-time, on-board the aircraft, and without external intervention. The focus of this research is the enhancement of a particular inverse dynamics direct method that is a candidate solution to the problem. This research introduces the following contributions to the method. A quaternion-based inverse dynamics model is introduced that represents all orientations without singularities, permits smooth interpolation of orientations, and generates more accurate controls than the previous Euler-angle model. Algorithmic modifications are introduced that: overcome singularities arising from parameterization and discretization; combine analytic and finite difference expressions to improve the accuracy of controls and constraints; remove roll ill-conditioning when the normal load factor is near zero, and extend the method to handle negative-g orientations. It is also shown in this research that quadratic interpolation improves the accuracy and speed of constraint evaluation. The method is known to lead to a multimodal constrained nonlinear optimization problem. The performance of the method with four nonlinear programming algorithms was investigated: a differential evolution algorithm was found to be capable of over 99% successful convergence, to generate solutions with better optimality than the quasi- Newton and derivative-free algorithms against which it was tested, but to be up to an order of magnitude slower than those algorithms. The effects of the degree and form of polynomial airspeed parameterization on optimization performance were investigated, and results were obtained that quantify the achievable optimality as a function of the parameterization degree. Overall, it was found that the method is a potentially viable method of on-board near- real-time trajectory generation for unmanned aircraft but for this potential to be realized in practice further improvements in computational speed are desirable. Candidate optimization strategies are identified for future research.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Graduate School: Course Decriptions, 1972-73

    Full text link
    Official publication of Cornell University V.64 1972/7

    Newark College of Engineering Graduate Programs 1974-75 Academic Year

    Get PDF
    https://digitalcommons.njit.edu/coursecatalogs/1021/thumbnail.jp
    corecore