687 research outputs found

    Semantics-driven Abstractive Document Summarization

    Get PDF
    The evolution of the Web over the last three decades has led to a deluge of scientific and news articles on the Internet. Harnessing these publications in different fields of study is critical to effective end user information consumption. Similarly, in the domain of healthcare, one of the key challenges with the adoption of Electronic Health Records (EHRs) for clinical practice has been the tremendous amount of clinical notes generated that can be summarized without which clinical decision making and communication will be inefficient and costly. In spite of the rapid advances in information retrieval and deep learning techniques towards abstractive document summarization, the results of these efforts continue to resemble extractive summaries, achieving promising results predominantly on lexical metrics but performing poorly on semantic metrics. Thus, abstractive summarization that is driven by intrinsic and extrinsic semantics of documents is not adequately explored. Resources that can be used for generating semantics-driven abstractive summaries include: • Abstracts of multiple scientific articles published in a given technical field of study to generate an abstractive summary for topically-related abstracts within the field, thus reducing the load of having to read semantically duplicate abstracts on a given topic. • Citation contexts from different authoritative papers citing a reference paper can be used to generate utility-oriented abstractive summary for a scientific article. • Biomedical articles and the named entities characterizing the biomedical articles along with background knowledge bases to generate entity and fact-aware abstractive summaries. • Clinical notes of patients and clinical knowledge bases for abstractive clinical text summarization using knowledge-driven multi-objective optimization. In this dissertation, we develop semantics-driven abstractive models based on intra- document and inter-document semantic analyses along with facts of named entities retrieved from domain-specific knowledge bases to produce summaries. Concretely, we propose a sequence of frameworks leveraging semantics at various granularity (e.g., word, sentence, document, topic, citations, and named entities) levels, by utilizing external resources. The proposed frameworks have been applied to a range of tasks including 1. Abstractive summarization of topic-centric multi-document scientific articles and news articles. 2. Abstractive summarization of scientific articles using crowd-sourced citation contexts. 3. Abstractive summarization of biomedical articles clustered based on entity-relatedness. 4. Abstractive summarization of clinical notes of patients with heart failure and Chest X-Rays recordings. The proposed approaches achieve impressive performance in terms of preserving semantics in abstractive summarization while paraphrasing. For summarization of topic-centric multiple scientific/news articles, we propose a three-stage approach where abstracts of scientific articles or news articles are clustered based on their topical similarity determined from topics generated using Latent Dirichlet Allocation (LDA), followed by extractive phase and abstractive phase. Then, in the next stage, we focus on abstractive summarization of biomedical literature where we leverage named entities in biomedical articles to 1) cluster related articles; and 2) leverage the named entities towards guiding abstractive summarization. Finally, in the last stage, we turn to external resources such as citation contexts pointing to a scientific article to generate a comprehensive and utility-centric abstractive summary of a scientific article, domain-specific knowledge bases to fill gaps in information about entities in a biomedical article to summarize and clinical notes to guide abstractive summarization of clinical text. Thus, the bottom-up progression of exploring semantics towards abstractive summarization in this dissertation starts with (i) Semantic Analysis of Latent Topics; builds on (ii) Internal and External Knowledge-I (gleaned from abstracts and Citation Contexts); and extends it to make it comprehensive using (iii) Internal and External Knowledge-II (Named Entities and Knowledge Bases)

    Correction with Backtracking Reduces Hallucination in Summarization

    Full text link
    Abstractive summarization aims at generating natural language summaries of a source document that are succinct while preserving the important elements. Despite recent advances, neural text summarization models are known to be susceptible to hallucinating (or more correctly confabulating), that is to produce summaries with details that are not grounded in the source document. In this paper, we introduce a simple yet efficient technique, CoBa, to reduce hallucination in abstractive summarization. The approach is based on two steps: hallucination detection and mitigation. We show that the former can be achieved through measuring simple statistics about conditional word probabilities and distance to context words. Further, we demonstrate that straight-forward backtracking is surprisingly effective at mitigation. We thoroughly evaluate the proposed method with prior art on three benchmark datasets for text summarization. The results show that CoBa is effective and efficient in reducing hallucination, and offers great adaptability and flexibility

    Text Summarization Across High and Low-Resource Settings

    Get PDF
    Natural language processing aims to build automated systems that can both understand and generate natural language textual data. As the amount of textual data available online has increased exponentially, so has the need for intelligence systems to comprehend and present it to the world. As a result, automatic text summarization, the process by which a text\u27s salient content is automatically distilled into a concise form, has become a necessary tool. Automatic text summarization approaches and applications vary based on the input summarized, which may constitute single or multiple documents of different genres. Furthermore, the desired output style may consist of a sentence or sub-sentential units chosen directly from the input in extractive summarization or a fusion and paraphrase of the input document in abstractive summarization. Despite differences in the above use-cases, specific themes, such as the role of large-scale data for training these models, the application of summarization models in real-world scenarios, and the need for adequately evaluating and comparing summaries, are common across these settings. This dissertation presents novel data and modeling techniques for deep neural network-based summarization models trained across high-resource (thousands of supervised training examples) and low-resource (zero to hundreds of supervised training examples) data settings and a comprehensive evaluation of the model and metric progress in the field. We examine both Recurrent Neural Network (RNN)-based and Transformer-based models to extract and generate summaries from the input. To facilitate the training of large-scale networks, we introduce datasets applicable for multi-document summarization (MDS) for pedagogical applications and for news summarization. While the high-resource settings allow models to advance state-of-the-art performance, the failure of such models to adapt to settings outside of that in which it was initially trained requires smarter use of labeled data and motivates work in low-resource summarization. To this end, we propose unsupervised learning techniques for both extractive summarization in question answering, abstractive summarization on distantly-supervised data for summarization of community question answering forums, and abstractive zero and few-shot summarization across several domains. To measure the progress made along these axes, we revisit the evaluation of current summarization models. In particular, this dissertation addresses the following research objectives: 1) High-resource Summarization. We introduce datasets for multi-document summarization, focusing on pedagogical applications for NLP, news summarization, and Wikipedia topic summarization. Large-scale datasets allow models to achieve state-of-the-art performance on these tasks compared to prior modeling techniques, and we introduce a novel model to reduce redundancy. However, we also examine how models trained on these large-scale datasets fare when applied to new settings, showing the need for more generalizable models. 2) Low-resource Summarization. While high-resource summarization improves model performance, for practical applications, data-efficient models are necessary. We propose a pipeline for creating synthetic training data for training extractive question-answering models, a form of query-based extractive summarization with short-phrase summaries. In other work, we propose an automatic pipeline for training a multi-document summarizer in answer summarization on community question-answering forums without labeled data. Finally, we push the boundaries of abstractive summarization model performance when little or no training data is available across several domains. 3) Automatic Summarization Evaluation. To understand the extent of progress made across recent modeling techniques and better understand the current evaluation protocols, we examine the current metrics used to compare summarization output quality across 12 metrics across 23 deep neural network models and propose better-motivated summarization evaluation guidelines as well as point to open problems in summarization evaluation

    SummIt: Iterative Text Summarization via ChatGPT

    Full text link
    Existing text summarization systems have made significant progress in recent years but typically generates summaries in a single step. The one-shot summarization setting is sometimes inadequate, however, as the generated summary may contain hallucinations or overlook important details related to the reader's interests. In this paper, we address this limitation by proposing SummIt, an iterative text summarization framework based on large language models like ChatGPT. Our framework enables the model to refine the generated summary iteratively through self-evaluation and feedback, closely resembling the iterative process humans undertake when drafting and revising summaries. We also explore using in-context learning to guide the rationale generation and summary refinement. Furthermore, we explore the potential benefits of integrating knowledge and topic extractors into the framework to enhance summary faithfulness and controllability. We evaluate the performance of our framework on three benchmark summarization datasets through empirical and qualitative analyses. We also conduct a human evaluation to validate the effectiveness of the model's refinements and find a potential issue of over-correction. Our code is available at \url{https://github.com/hpzhang94/summ_it}.Comment: work in progres

    Can LMs Generalize to Future Data? An Empirical Analysis on Text Summarization

    Full text link
    Recent pre-trained language models (PLMs) achieve promising results in existing abstractive summarization datasets. However, existing summarization benchmarks overlap in time with the standard pre-training corpora and finetuning datasets. Hence, the strong performance of PLMs may rely on the parametric knowledge that is memorized during pre-training and fine-tuning. Moreover, the knowledge memorized by PLMs may quickly become outdated, which affects the generalization performance of PLMs on future data. In this work, we propose TempoSum, a novel benchmark that contains data samples from 2010 to 2022, to understand the temporal generalization ability of abstractive summarization models. Through extensive human evaluation, we show that parametric knowledge stored in summarization models significantly affects the faithfulness of the generated summaries on future data. Moreover, existing faithfulness enhancement methods cannot reliably improve the faithfulness of summarization models on future data. Finally, we discuss several recommendations to the research community on how to evaluate and improve the temporal generalization capability of text summarization models.Comment: Accepted at EMNLP 202

    On Extractive and Abstractive Neural Document Summarization with Transformer Language Models

    Full text link
    We present a method to produce abstractive summaries of long documents that exceed several thousand words via neural abstractive summarization. We perform a simple extractive step before generating a summary, which is then used to condition the transformer language model on relevant information before being tasked with generating a summary. We show that this extractive step significantly improves summarization results. We also show that this approach produces more abstractive summaries compared to prior work that employs a copy mechanism while still achieving higher rouge scores. Note: The abstract above was not written by the authors, it was generated by one of the models presented in this paper
    • …
    corecore