2 research outputs found

    Improving Land Use/Cover Classification with a Multiple Classifier System Using AdaBoost Integration Technique

    No full text
    Guangzhou has experienced a rapid urbanization since 1978 when China initiated the economic reform, resulting in significant land use/cover changes (LUC). To produce a time series of accurate LUC dataset that can be used to study urbanization and its impacts, Landsat imagery was used to map LUC changes in Guangzhou from 1987 to 2015 at a three-year interval using a multiple classifier system (MCS). The system was based on a weighted vector to combine base classifiers of different classification algorithms, and was improved using the AdaBoost technique. The new classification method used support vector machines (SVM), C4.5 decision tree, and neural networks (ANN) as the training algorithms of the base classifiers, and produced higher overall classification accuracy (88.12%) and Kappa coefficient (0.87) than each base classifier did. The results of the experiment showed that, based on the accuracy improvement of each class, the overall accuracy was improved effectively, which combined advantages from each base classifier. The new method is of high robustness and low risk of overfitting, and is reliable and accurate, and could be used for analyzing urbanization processes and its impacts

    Classification of land use and land cover through machine learning algorithms: a literature review

    Full text link
    [EN] Methodologies for land use and land cover (LULC) classification have demonstrated significant advances in recent years, such as the incorporation of machine learning (ML) classification techniques, which have gained popularity and acceptance of their capabilities. However, the lack of methodological consensus has led to a disorderly application of ML methods in the classification of LULC. Through the literature review, we identified some points in how the methods are being implemented as possible implications for the classification of LULC. For this review, only scientific articles published between 2000 and 2020 were analyzed that incorporated any of the following algorithms for LULC classification: K-nearest neighbor (KNN), random forest (RF), support vector machine (SVM), artificial neural network (ANN) and decision trees (DT). Using the results of the literature review, we were able to confirm the potential of the algorithms. We also identified areas for improvement in the application of machine learning to the classification of LULC. These areas include the integration of data sets, parameterization of algorithms, and evaluation of results. Consequently, we generated a selection of guidelines based on the recommendations of various authors that we consider will be useful for users interested in these methods.[ES] Los métodos para la clasificación de uso y cobertura del suelo (UCS) han mostrado avances importantes en los últimos años, como la incorporación de las técnicas de aprendizaje automático (machine learning-ML) que han ganado popularidad y aceptación por sus resultados. Sin embargo, la falta de consensos metodológicos ha provocado una aplicación desordenada de los métodos ML en la clasificación de UCS. Por lo que a través de la revisión bibliográfica practicada se identificaron puntos de la forma en que se están implementando los métodos, así como posibles implicaciones en la clasificación de UCS al darse de esta manera. Para dicha revisión se utilizaron únicamente artículos científicos publicados entre el año 2000 al 2020 y que consideraran alguno de los siguientes algoritmos para la clasificación de UCS: k vecinos más cercanos (K-nearest neighbor-KNN), bosque aleatorio (random forest-RF), máquina de soporte de vectores (support vector machine-SVM), redes neuronales artificiales (artificial neural network-ANN) y árboles de decisión (decision trees-DT). A través de los resultados obtenidos en la revisión bibliográfica, se reafirma el potencial de los algoritmos y se identifican puntos de mejora para la aplicación de ML en la clasificación de UCS, especialmente en la integración de los conjuntos de datos, la parametrización de los algoritmos y la evaluación de los resultados, generando a su vez una selección de buenas prácticas a partir de las recomendaciones de diversos autores las cuales consideramos serán de utilidad para usuarios interesados en estos métodos.Tobar-Díaz, R.; Gao, Y.; Mas, JF.; Cambrón-Sandoval, VH. (2023). Clasificación de uso y cobertura del suelo a través de algoritmos de aprendizaje automático: revisión bibliográfica. Revista de Teledetección. (62):1-19. https://doi.org/10.4995/raet.2023.1901411962Abdel-Rahman, E.M., Mutanga, O., Adam, E., & Ismail, R. 2014. Detecting Sirex noctilio greyattacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers. ISPRS Journal of Photogrammetry and Remote Sensing, 88, 48-59. https://doi.org/10.1016/j.isprsjprs.2013.11.013Abdi, A.M. 2020. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience & Remote Sensing, 57(1), 1-20. https://doi.org/10.1080/15481603.2019.1650447Adam, E., Mutanga, O., Odindi, J., & Abdel-Rahman, E.M. 2014. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing, 35(10), 3440-3458. https://doi.org/10.1080/01431161.2014.903435Aguilera, M. 2020. Classication Of Land-Cover Through Machine Learning Algorithms For Fusion Of Sentinel-2a And Planetscope Imagery. 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), 246-253. https://doi.org/10.1109/LAGIRS48042.2020.9165632Alpaydin, E. 2014. Introduction to Machine Learning (3.a ed.). MIT Press.Bashir, D., Montañez, G.D., Sehra, S., Segura, P.S., & Lauw, J. 2020. An Information-Theoretic Perspective on Overfitting and Underfitting. En M. Gallagher, N. Moustafa, & E. Lakshika (Eds.), AI 2020: Advances in Artificial Intelligence (pp. 347-358). Springer International Publishing. https://doi.org/10.1007/978-3-030-64984-5_27Belgiu, M., & Drăguţ, L. 2016. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011Bishop, C.M. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag.Blum, A.L., & Langley, P. 1997. Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1), 245-271. https://doi.org/10.1016/S0004-3702(97)00063-5Breiman, L. 2001. Random Forests. Machine Learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324Campbell, J.B., & Wynne, R.H. 2011. Introduction to Remote Sensing, Fifth Edition. Guilford Publications. https://books.google.com.mx/books?id=NkLmDjSS8TsCCard, D. 1982. Using map category marginal frequencies to improve estimates of thematic map accuracy. Photogrammetric Engineering and Remote Sensing, 48(3), 431-439.Chakraborty, A., Sachdeva, K., & Joshi, P.K. 2016. Mapping long-term land use and land cover change in the central Himalayan region using a treebased ensemble classification approach. Applied Geography, 74, 136-150. https://doi.org/10.1016/j.apgeog.2016.07.008Chang, N.-B., & Bai, K. 2018. Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing (1.a ed.). CRC Press. https://doi.org/10.1201/9781315154602Chen, Y., Dou, P., & Yang, X. 2017. Improving Land Use/Cover Classification with a Multiple Classifier System Using AdaBoost Integration Technique. Remote Sensing, 9(10), 1055. https://doi.org/10.3390/rs9101055Christovam, L.E., Pessoa, G.G., Shimabukuro, M.H., & Galo, M.L.B.T. 2019. Land use and land cover classification using hyperspectral imagery: evaluating the performance of spectral angle mapper, support vector machine and random forest. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W13, 1841-1847. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1841-2019Congalton, R.G., & Green, K. 2019. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Third Edition (3.a ed.). CRC Press. https://doi.org/10.1201/9780429052729Demirkan, D.Ç., Koz, A., & Düzgün, H.Ş. 2020. Hierarchical classification of Sentinel 2-a images for land use and land cover mapping and its use for the CORINE system. Journal of Applied Remote Sensing, 14(02), 1. https://doi.org/10.1117/1.JRS.14.026524Di Shi, & Yang, X. 2017. A Relative Evaluation of Random Forests for Land Cover Mapping in an Urban Area. Photogrammetric Engineering & Remote Sensing, 83(8), 541-552. https://doi.org/10.14358/PERS.83.8.541Dong, J., Metternicht, G., Hostert, P., Fensholt, R., & Chowdhury, R.R. 2019. Remote sensing and geospatial technologies in support of a normative land system science: Status and prospects. Current Opinion in Environmental Sustainability, 38, 44-52. https://doi.org/10.1016/j.cosust.2019.05.003Elatawneh, A., Kalaitzidis, C., Petropoulos, G.P., & Schneider, T. 2014. Evaluation of diverse classification approaches for land use/cover mapping in a Mediterranean region utilizing Hyperion data. International Journal of Digital Earth, 7(3), 194-216. https://doi.org/10.1080/17538947.2012.671378Foody, G.M. 2004. Thematic map comparison. Photogrammetric Engineering & Remote Sensing, 70(5), 627-633. https://doi.org/10.14358/PERS.70.5.627Foody, G.M., & Mathur, A. 2004. Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sensing of Environment, 93(1-2), 107-117. https://doi.org/10.1016/j.rse.2004.06.017Ganbold, Ganchimeg, & Chasia, Stanley. 2017. Comparison between Possibilistic c-Means (PCM) and Artificial Neural Network (ANN) Classification Algorithms in Land use/ Land cover Classification. International Journal of Knowledge Content Development & Technology, 7(1), 57-78. https://doi.org/10.5865/IJKCT.2017.7.1.057Ge, G., Shi, Z., Zhu, Y., Yang, X., & Hao, Y. 2020. Land use/cover classification in an arid desertoasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms. Global Ecology and Conservation, 22, e00971. https://doi.org/10.1016/j.gecco.2020.e00971Géron, A. 2019. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media.Gislason, P.O., Benediktsson, J.A., & Sveinsson, J.R. 2006. Random Forests for land cover classification. Pattern Recognition Letters, 27(4), 294-300. https://doi.org/10.1016/j.patrec.2005.08.011Gualtieri, J.A., & Cromp, R.F. 1999. Support vector machines for hyperspectral remote sensing classification. R.J. Mericsko, Ed.; pp. 221-232. https://doi.org/10.1117/12.339824Halmy, M.W.A., & Gessler, P.E. 2015. The application of ensemble techniques for land-cover classification in arid lands. International Journal of Remote Sensing, 36(22), 5613-5636. https://doi.org/10.1080/01431161.2015.1103915Hastie, T., Tibshirani, R., Friedman, J.H., & Friedman, J.H. 2009. The elements of statistical learning: Data mining, inference, and prediction (Vol. 2). Springer. https://doi.org/10.1007/978-0-387-84858-7Herold, M., Latham, J.S., Di Gregorio, A., & Schmullius, C.C. 2006. Evolving standards in land cover characterization. Journal of Land Use Science, 1(2-4), 157-168. https://doi.org/10.1080/17474230601079316Heydari, S.S., & Mountrakis, G. 2018. Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in perpixel classification accuracy using 26 Landsat sites. Remote Sensing of Environment, 204, 648-658. https://doi.org/10.1016/j.rse.2017.09.035Huang, C., Davis, L.S., & Townshend, J.R.G. 2002. An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725-749. https://doi.org/10.1080/01431160110040323Jamali, A. 2019. A fit-for-purpose algorithm for environmental monitoring based on maximum likelihood, support vector machine and random forest. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W7, 25-32. https://doi.org/10.5194/isprs-archives-XLII-3-W7-25-2019Jamil, A., & Bayram, B. 2018. Tree Species Extraction and Land Use/Cover Classification From HighResolution Digital Orthophoto Maps. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(1), 89-94. https://doi.org/10.1109/JSTARS.2017.2756864Jia, K., Liang, S., Wei, X., Yao, Y., Su, Y., Jiang, B., & Wang, X. 2014. Land Cover Classification of Landsat Data with Phenological Features Extracted from Time Series MODIS NDVI Data. Remote Sensing, 6(11), 11518-11532. https://doi.org/10.3390/rs61111518Jozdani, S.E., Johnson, B.A., & Chen, D. 2019. Comparing Deep Neural Networks, Ensemble Classifiers, and Support Vector Machine Algorithms for Object-Based Urban Land Use/Land Cover Classification. Remote Sensing, 11(14), 1713. https://doi.org/10.3390/rs11141713Kamusoko, C. 2019. Remote Sensing Image Classification in R. Springer Singapore. https://doi.org/10.1007/978-981-13-8012-9Karakacan Kuzucu, A., & Bektas Balcik, F. 2017. Testing the potential of vegetation indices for land use/cover classification using high resolution data. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-4/W4, 279-283. https://doi.org/10.5194/isprs-annals-IV-4-W4-279-2017Kelleher, J.D., Namee, B.M., & D'Arcy, A. 2015. Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. MIT Press.Knox, S.W. 2018. Machine learning: A concise introduction. John Wiley & Sons. https://doi.org/10.1002/9781119439868Koomen, E., Stillwell, J.(2007) Modelling land-use change en Koomen, E., Stillwell, J., Bakema, A., & Scholten, H.J. Modelling land-use change: Progress and applications (Vol. 90)(1-21). Springer Science & Business Media. https://doi.org/10.1007/1-4020-5648-6_1Kuhn, M., & Johnson, K. 2013. Applied Predictive Modeling. Springer New York. https://doi.org/10.1007/978-1-4614-6849-3Li, C., Wang, J., Wang, L., Hu, L., & Gong, P. 2014. Comparison of Classification Algorithms and Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper Imagery. Remote Sensing, 6(2), 964-983. https://doi.org/10.3390/rs6020964Lillesand, T., Kiefer, R.W., & Chipman, J. 2015. Remote Sensing and Image Interpretation. Wiley.Lu, D., & Weng, Q. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823-870. https://doi.org/10.1080/01431160600746456Marsland, S. 2014. Machine Learning: An Algorithmic Perspective (2.a ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b17476Mas, J.F., & Flores, J.J. 2008. The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing, 29(3), 617-663. https://doi.org/10.1080/01431160701352154Maxwell, A.E., Warner, T.A., & Fang, F. 2018. Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784-2817. https://doi.org/10.1080/01431161.2018.1433343Mfuka, C., Zhang, X., & Byamukama, E. 2019. Mapping and Quantifying White Mold in Soybean across South Dakota Using Landsat Images. Journal of Geographic Information System, 11(03), 331-346. https://doi.org/10.4236/jgis.2019.113020Müller, A.C., & Guido, S. 2016. Introduction to machine learning with Python: A guide for data scientists. O'Reilly Media, Inc.Myburgh, G., & Niekerk, A. 2013. Effect of feature dimensionality on object-based land cover classification: A comparison of three classifiers. South African Journal of Geomatics. https://www.semanticscholar.org/paper/Effect-of-featuredimensionality-on-object-based-A-Myburgh-Niekerk/298f8341429248311f9a688741d0ee4344aa404cPedregosa, F., Varoquaux, Ga"el, Gramfort, A., Michel, V., Thirion, B., Grisel, O., … others. 2011. Scikitlearn: Machine learning in Python. Journal of Machine Learning Research, 12(Oct), 2825-2830.Petropoulos, G.P., Kalaitzidis, C., & Prasad Vadrevu, K. 2012. Support vector machines and objectbased classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Computers & Geosciences, 41, 99-107. https://doi.org/10.1016/j.cageo.2011.08.019Pontius, R.G., & Millones, M. 2011. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407-4429. https://doi.org/10.1080/01431161.2011.552923Puertas, O.L., Brenning, A., & Meza, F.J. 2013. Balancing misclassification errors of land cover classification maps using support vector machines and Landsat imagery in the Maipo river basin (Central Chile, 1975-2010). Remote Sensing of Environment, 137, 112-123. https://doi.org/10.1016/j.rse.2013.06.003Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. 2015. Comparing Machine Learning Classifiers for ObjectBased Land Cover Classification Using Very High Resolution Imagery. Remote Sensing, 7(1), Art. 1. https://doi.org/10.3390/rs70100153Olofsson, P., Foody, G.M., Herold, M., Stehman, S. V., Woodcock, C.E., & Wulder, M.A. 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42-57. https://doi.org/10.1016/j.rse.2014.02.015R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.Rproject.org/.Ramezan, C.A., Warner, T.A., Maxwell, A.E., & Price, B.S. 2021. Effects of Training Set Size on Supervised Machine-Learning Land-Cover Classification of Large-Area High-Resolution Remotely Sensed Data. Remote Sensing, 13(3), Art. 3. https://doi.org/10.3390/rs13030368Rana, V.K., & Venkata Suryanarayana, T.M. 2020. Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using sentinel 2 bands. Remote Sensing Applications: Society and Environment, 19, 100351. https://doi.org/10.1016/j.rsase.2020.100351Richards, J.A. 2013. Remote sensing digital image analysis: An introduction (Fifth edition). Springer. https://doi.org/10.1007/978-3-642-30062-2Saini, R., & Ghosh, S.K. 2018. Exploring capabilities of sentinel-2 for vegetation mapping using random forest. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3, 1499-1502. https://doi.org/10.5194/isprs-archives-XLII-3-1499-2018Shalev-Shwartz, S., & Ben-David, S. 2014. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press. https://doi.org/10.1017/CBO9781107298019Shih, H., Stow, D.A., & Tsai, Y.H. 2019. Guidance on and comparison of machine learning classifiers for Landsat-based land cover and land use mapping. International Journal of Remote Sensing, 40(4), 1248-1274. https://doi.org/10.1080/01431161.2018.1524179Syifa, M., Park, S.J., & Lee, C.W. 2020. Detection of the Pine Wilt Disease Tree Candidates for Drone Remote Sensing Using Artificial Intelligence Techniques. Engineering, 6(8), 919-926. https://doi.org/10.1016/j.eng.2020.07.001Szuster, B.W., Chen, Q., & Borger, M. 2011. A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Applied Geography, 31(2), 525-532. https://doi.org/10.1016/j.apgeog.2010.11.007Talukdar, S., Singha, P., Mahato, S., Shahfahad, Pal, S., Liou, Y.-A., & Rahman, A. 2020. LandUse Land-Cover Classification by Machine Learning Classifiers for Satellite Observations-A Review. Remote Sensing, 12(7), 1135. https://doi.org/10.3390/rs12071135Tassi, A., & Vizzari, M. 2020. Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms. Remote Sensing, 12(22), 3776. https://doi.org/10.3390/rs12223776Thanh Noi, P., & Kappas, M. 2017. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors, 18(2), 18. https://doi.org/10.3390/s18010018Tso, B., & Mather, P.M. 2009. Classification methods for remotely sensed data (2nd ed). CRC Press.Thomas, I.L., Ching, N.P., Benning, V.M., & D'aguanno, J.A. 1987. Review Article A review of multi-channel indices of class separability. International Journal of Remote Sensing, 8(3), 331-350. https://doi.org/10.1080/01431168708948645Vélez-Alvarado, D.A., & Álvarez-Mozos, J. 2020. Clasificación de usos y cubiertas del suelo y análisis de cambios en los alrededores de la Reserva Ecológica Manglares Churute (Ecuador) mediante una serie de imágenes Sentinel-1. Revista de Teledetección, 56, 131. https://doi.org/10.4995/raet.2020.14099Wilson, R.A., & Keil, F.C. (Eds.). 1999. The MIT encyclopedia of the cognitive sciences. MIT Press. https://doi.org/10.7551/mitpress/4660.001.0001Yu, L., Liang, L., Wang, J., Zhao, Y., Cheng, Q., Hu, L., Liu, S., Yu, L., Wang, X., Zhu, P., Li, X., Xu, Y., Li, C., Fu, W., Li, X., Li, W., Liu, C., Cong, N., Zhang, H., … Gong, P. 2014. Meta-discoveries from a synthesis of satellite-based land-cover mapping research. International Journal of Remote Sensing, 35(13), 4573-4588. https://doi.org/10.1080/01431161.2014.93020
    corecore