18,530 research outputs found

    FReLU: Flexible Rectified Linear Units for Improving Convolutional Neural Networks

    Full text link
    Rectified linear unit (ReLU) is a widely used activation function for deep convolutional neural networks. However, because of the zero-hard rectification, ReLU networks miss the benefits from negative values. In this paper, we propose a novel activation function called \emph{flexible rectified linear unit (FReLU)} to further explore the effects of negative values. By redesigning the rectified point of ReLU as a learnable parameter, FReLU expands the states of the activation output. When the network is successfully trained, FReLU tends to converge to a negative value, which improves the expressiveness and thus the performance. Furthermore, FReLU is designed to be simple and effective without exponential functions to maintain low cost computation. For being able to easily used in various network architectures, FReLU does not rely on strict assumptions by self-adaption. We evaluate FReLU on three standard image classification datasets, including CIFAR-10, CIFAR-100, and ImageNet. Experimental results show that the proposed method achieves fast convergence and higher performances on both plain and residual networks

    Colorization as a Proxy Task for Visual Understanding

    Full text link
    We investigate and improve self-supervision as a drop-in replacement for ImageNet pretraining, focusing on automatic colorization as the proxy task. Self-supervised training has been shown to be more promising for utilizing unlabeled data than other, traditional unsupervised learning methods. We build on this success and evaluate the ability of our self-supervised network in several contexts. On VOC segmentation and classification tasks, we present results that are state-of-the-art among methods not using ImageNet labels for pretraining representations. Moreover, we present the first in-depth analysis of self-supervision via colorization, concluding that formulation of the loss, training details and network architecture play important roles in its effectiveness. This investigation is further expanded by revisiting the ImageNet pretraining paradigm, asking questions such as: How much training data is needed? How many labels are needed? How much do features change when fine-tuned? We relate these questions back to self-supervision by showing that colorization provides a similarly powerful supervisory signal as various flavors of ImageNet pretraining.Comment: CVPR 2017 (Project page: http://people.cs.uchicago.edu/~larsson/color-proxy/

    Linear, Deterministic, and Order-Invariant Initialization Methods for the K-Means Clustering Algorithm

    Full text link
    Over the past five decades, k-means has become the clustering algorithm of choice in many application domains primarily due to its simplicity, time/space efficiency, and invariance to the ordering of the data points. Unfortunately, the algorithm's sensitivity to the initial selection of the cluster centers remains to be its most serious drawback. Numerous initialization methods have been proposed to address this drawback. Many of these methods, however, have time complexity superlinear in the number of data points, which makes them impractical for large data sets. On the other hand, linear methods are often random and/or sensitive to the ordering of the data points. These methods are generally unreliable in that the quality of their results is unpredictable. Therefore, it is common practice to perform multiple runs of such methods and take the output of the run that produces the best results. Such a practice, however, greatly increases the computational requirements of the otherwise highly efficient k-means algorithm. In this chapter, we investigate the empirical performance of six linear, deterministic (non-random), and order-invariant k-means initialization methods on a large and diverse collection of data sets from the UCI Machine Learning Repository. The results demonstrate that two relatively unknown hierarchical initialization methods due to Su and Dy outperform the remaining four methods with respect to two objective effectiveness criteria. In addition, a recent method due to Erisoglu et al. performs surprisingly poorly.Comment: 21 pages, 2 figures, 5 tables, Partitional Clustering Algorithms (Springer, 2014). arXiv admin note: substantial text overlap with arXiv:1304.7465, arXiv:1209.196

    Training Process Reduction Based On Potential Weights Linear Analysis To Accelarate Back Propagation Network

    Get PDF
    Learning is the important property of Back Propagation Network (BPN) and finding the suitable weights and thresholds during training in order to improve training time as well as achieve high accuracy. Currently, data pre-processing such as dimension reduction input values and pre-training are the contributing factors in developing efficient techniques for reducing training time with high accuracy and initialization of the weights is the important issue which is random and creates paradox, and leads to low accuracy with high training time. One good data preprocessing technique for accelerating BPN classification is dimension reduction technique but it has problem of missing data. In this paper, we study current pre-training techniques and new preprocessing technique called Potential Weight Linear Analysis (PWLA) which combines normalization, dimension reduction input values and pre-training. In PWLA, the first data preprocessing is performed for generating normalized input values and then applying them by pre-training technique in order to obtain the potential weights. After these phases, dimension of input values matrix will be reduced by using real potential weights. For experiment results XOR problem and three datasets, which are SPECT Heart, SPECTF Heart and Liver disorders (BUPA) will be evaluated. Our results, however, will show that the new technique of PWLA will change BPN to new Supervised Multi Layer Feed Forward Neural Network (SMFFNN) model with high accuracy in one epoch without training cycle. Also PWLA will be able to have power of non linear supervised and unsupervised dimension reduction property for applying by other supervised multi layer feed forward neural network model in future work.Comment: 11 pages IEEE format, International Journal of Computer Science and Information Security, IJCSIS 2009, ISSN 1947 5500, Impact factor 0.42
    corecore