14 research outputs found

    GPU-aided edge computing for processing the k nearest-neighbor query on SSD-resident data

    Get PDF
    Edge computing aims at improving performance by storing and processing data closer to their source. The Nearest-Neighbor (-NN) query is a common spatial query in several applications. For example, this query can be used for distance classification of a group of points against a big reference dataset to derive the dominating feature class. Typically, GPU devices have much larger numbers of processing cores than CPUs and faster device memory than main memory accessed by CPUs, thus, providing higher computing power. However, since device and/or main memory may not be able to host an entire reference dataset, the use of secondary storage is inevitable. Solid State Disks (SSDs) could be used for storing such a dataset. In this paper, we propose an architecture of a distributed edge-computing environment where large-scale processing of the -NN query can be accomplished by executing an efficient algorithm for processing the -NN query on its (GPU and SSD enabled) edge nodes. We also propose a new algorithm for this purpose, a GPU-based partitioning algorithm for processing the -NN query on big reference data stored on SSDs. We implement this algorithm in a GPU-enabled edge-computing device, hosting reference data on an SSD. Using synthetic datasets, we present an extensive experimental performance comparison of the new algorithm against two existing ones (working on memory-resident data) proposed by other researchers and two existing ones (working on SSD-resident data) recently proposed by us. The new algorithm excels in all the conducted experiments and outperforms its competitors

    The Development of Novel Pulse Shape Analysis Algorithms for AGATA

    Get PDF
    In the field of Nuclear Physics the use of large-scale γ-Ray Tracking (GRT) for arrays like the Advanced Gamma Tracking Array (AGATA) is critical in pushing the envelope of our understanding of the complex phenomena that govern our universe. GRT allows for AGATA to track γ-rays across crystals within the array, allowing for unrivalled Doppler correction and Compton add-back. In order for GRT to function effectively, the interaction position and energy depositions of γ-rays within the array must be effectively determined using Pulse Shape Analysis (PSA). Within AGATA, optimisation-based PSA methods are used to localise γ-ray interactions by comparing experimental detector signals against a simulated basis. A simulated basis has been produced for the A005 AGATA detector crystal, which was used to underpin the development and evaluation of novel PSA methods. Machine Learning was also utilised to perform signal discrimination, compression, correction & regression. Graph-Accelerated k-Nearest Neighbour techniques for PSA were profiled and found to offer significant improvements to execution rate and accuracy. An extensive investigation into the performance of the PSA algorithms with respect to noise level, timeshifting and embedded dimensionality was performed to determine to the most effective algorithm of PSA for AGATA. By utilising the GPU & graph-accelerated algorithm Facebook AI Similarity Search (FAISS) on a principal component analysis reduced 100D embedding, comparable accuracy to the accepted standard was found with an ∼ 43, 000% increase in execution rate. The mathematical framework for the efficient precomputation of the responses of γ-rays that interact multiple times across the crystal (High-Fold) is proposed that should allow the augmentation of Fold-1 kNN search to work on High-Fold with minimal penalty to execution rate. It has also been demonstrated that FAISS can successfully reconstruct a variety of experimental data acquired with AGATA detector crystals

    Acta Universitatis Sapientiae - Electrical and Mechanical Engineering

    Get PDF
    Series Electrical and Mechanical Engineering publishes original papers and surveys in various fields of Electrical and Mechanical Engineering

    Sustainable Agriculture and Advances of Remote Sensing (Volume 2)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publication of the results, among others

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    An Effective Approach to Predicting Large Dataset in Spatial Data Mining Area

    Get PDF
    Due to enormous quantities of spatial satellite images, telecommunication images, health related tools etc., it is often impractical for users to have detailed and thorough examination of spatial data (S). Large dataset is very common and pervasive in a number of application areas. Discovering or predicting patterns from these datasets is very vital. This research focused on developing new methods, models and techniques for accomplishing advanced spatial data mining (ASDM) tasks. The algorithms were designed to challenge state-of-the-art data technologies and they are tested with randomly generated and actual real-world data. Two main approaches were adopted to achieve the objectives (1) identifying the actual data types (DTs), data structures and spatial content of a given dataset (to make our model versatile and robust) and (2) integrating these data types into an appropriate database management system (DBMS) framework, for easy management and manipulation. These two approaches helped to discover the general and varying types of patterns that exist within any given dataset non-spatial, spatial or even temporal (because spatial data are always influenced by temporal agents) datasets. An iterative method was adopted for system development methodology in this study. The method was adopted as a strategy to combat the irregularity that often exists within spatial datasets. In the course of this study, some of the challenges we encountered which also doubled as current challenges facing spatial data mining includes: (a) time complexity in availing useful data for analysis, (b) time complexity in loading data to storage and (c) difficulties in discovering spatial, non-spatial and temporal correlations between different data objects. However, despite the above challenges, there are some opportunities that spatial data can benefit from including: Cloud computing, Spark technology, Parallelisation, and Bulk-loading methods. Techniques and application areas of spatial data mining (SDM) were identified and their strength and limitations were equally documented. Finally, new methods and algorithms for mining very large data of spatial/non-spatial bias were created. The proposed models/systems are documented in the sections as follows: (a) Development of a new technique for parallel indexing of large dataset (PaX-DBSCAN), (b) Development of new techniques for clustering (X-DBSCAN) in a learning process, (c) Development of a new technique for detecting human skin in an image, (d) Development of a new technique for finding face in an image, (e) Development of a novel technique for management of large spatial and non-spatial datasets (aX-tree). The most prominent among our methods is the new structure used in (c) above -- packed maintained k-dimensional tree (Pmkd-tree), for fast spatial indexing and querying. The structure is a combination system that combines all the proposed algorithms to produce one solid, standard, useful and quality system. The intention of the new final algorithm (system) is to combine the entire initial proposed algorithms to come up with one strong generic effective tool for predicting large dataset SDM area, which it is capable of finding patterns that exist among spatial or non-spatial objects in a DBMS. In addition to Pmkd-tree, we also implemented a novel spatial structure, packed quad-tree (Pquad-Tree), to balance and speed up the performance of the regular quad-tree. Our systems so far have shown a manifestation of efficiency in terms of performance, storage and speed. The final Systems (Pmkd-tree and Pquad-Tree) are generic systems that are flexible, robust, light and stable. They are explicit spatial models for analysing any given problem and for predicting objects as spatially distributed events, using basic SDM algorithms. They can be applied to pattern matching, image processing, computer vision, bioinformatics, information retrieval, machine learning (classification and clustering) and many other computational tasks

    Proceedings of the 19th Sound and Music Computing Conference

    Get PDF
    Proceedings of the 19th Sound and Music Computing Conference - June 5-12, 2022 - Saint-Étienne (France). https://smc22.grame.f
    corecore