11 research outputs found

    When Do WOM Codes Improve the Erasure Factor in Flash Memories?

    Full text link
    Flash memory is a write-once medium in which reprogramming cells requires first erasing the block that contains them. The lifetime of the flash is a function of the number of block erasures and can be as small as several thousands. To reduce the number of block erasures, pages, which are the smallest write unit, are rewritten out-of-place in the memory. A Write-once memory (WOM) code is a coding scheme which enables to write multiple times to the block before an erasure. However, these codes come with significant rate loss. For example, the rate for writing twice (with the same rate) is at most 0.77. In this paper, we study WOM codes and their tradeoff between rate loss and reduction in the number of block erasures, when pages are written uniformly at random. First, we introduce a new measure, called erasure factor, that reflects both the number of block erasures and the amount of data that can be written on each block. A key point in our analysis is that this tradeoff depends upon the specific implementation of WOM codes in the memory. We consider two systems that use WOM codes; a conventional scheme that was commonly used, and a new recent design that preserves the overall storage capacity. While the first system can improve the erasure factor only when the storage rate is at most 0.6442, we show that the second scheme always improves this figure of merit.Comment: to be presented at ISIT 201

    Elevating commodity storage with the SALSA host translation layer

    Full text link
    To satisfy increasing storage demands in both capacity and performance, industry has turned to multiple storage technologies, including Flash SSDs and SMR disks. These devices employ a translation layer that conceals the idiosyncrasies of their mediums and enables random access. Device translation layers are, however, inherently constrained: resources on the drive are scarce, they cannot be adapted to application requirements, and lack visibility across multiple devices. As a result, performance and durability of many storage devices is severely degraded. In this paper, we present SALSA: a translation layer that executes on the host and allows unmodified applications to better utilize commodity storage. SALSA supports a wide range of single- and multi-device optimizations and, because is implemented in software, can adapt to specific workloads. We describe SALSA's design, and demonstrate its significant benefits using microbenchmarks and case studies based on three applications: MySQL, the Swift object store, and a video server.Comment: Presented at 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS

    Revisiting DBMS Space Management for Native Flash

    Get PDF
    ABSTRACT In this paper we present our work in progress on revisiting traditional DBMS mechanisms to manage space on native Flash and how it is administered by the DBA. Our observations and initial results show that: the standard logical database structures can be used for physical organization of data on native Flash; at the same time higher DBMS performance is achieved without incurring extra DBA overhead. Initial experimental evaluation indicates a 20% increase in transactional throughput under TPC-C, by performing intelligent data placement on Flash, less erase operations and thus better Flash longevity

    Implementing Write Compression in Flash Memory Using Zeckendorf Two-Round Rewriting Codes

    Get PDF
    Flash memory has become increasingly popular as the underlying storage technology for high-performance nonvolatile storage devices. However, while flash offers several benefits over alternative storage media, a number of limitations still exist within the current technology. One such limitation is that programming (altering a bit from its default value) and erasing (returning a bit to its default value) are asymmetric operations in flash memory devices: a flash memory can be programmed arbitrarily, but can only be erased in relatively large batches of storage bits called blocks, with block sizes ranging from 512K up to several megabytes. This creates a situation where relatively small write operations to the drive can potentially require reading out, erasing, and rewriting many times more data than the initial operation would normally require if that write would result in a bit erase operation. Prior work suggests that the performance impact of these costly block erase cycles can be mitigated by using a rewriting code, increasing the number of writes that can be performed on the same location in memory before an erase operation is required. This paper provides an implementation of this rewriting code, both as a software program written in C and as a SystemVerilog FPGA circuit specification, and discusses many of the additional design considerations that would be necessary to integrate such a rewriting code with current file storage techniques

    Bridging the Gap between Application and Solid-State-Drives

    Get PDF
    Data storage is one of the important and often critical parts of the computing system in terms of performance, cost, reliability, and energy. Numerous new memory technologies, such as NAND flash, phase change memory (PCM), magnetic RAM (STT-RAM) and Memristor, have emerged recently. Many of them have already entered the production system. Traditional storage optimization and caching algorithms are far from optimal because storage I/Os do not show simple locality. To provide optimal storage we need accurate predictions of I/O behavior. However, the workloads are increasingly dynamic and diverse, making the long and short time I/O prediction challenge. Because of the evolution of the storage technologies and the increasing diversity of workloads, the storage software is becoming more and more complex. For example, Flash Translation Layer (FTL) is added for NAND-flash based Solid State Disks (NAND-SSDs). However, it introduces overhead such as address translation delay and garbage collection costs. There are many recent studies aim to address the overhead. Unfortunately, there is no one-size-fits-all solution due to the variety of workloads. Despite rapidly evolving in storage technologies, the increasing heterogeneity and diversity in machines and workloads coupled with the continued data explosion exacerbate the gap between computing and storage speeds. In this dissertation, we improve the data storage performance from both top-down and bottom-up approach. First, we will investigate exposing the storage level parallelism so that applications can avoid I/O contentions and workloads skew when scheduling the jobs. Second, we will study how architecture aware task scheduling can improve the performance of the application when PCM based NVRAM are equipped. Third, we will develop an I/O correlation aware flash translation layer for NAND-flash based Solid State Disks. Fourth, we will build a DRAM-based correlation aware FTL emulator and study the performance in various filesystems
    corecore