848 research outputs found

    Improving Energy Conservation Using Bulk Transmission over High-Power Radios in Sensor Networks

    Get PDF
    International audienceLow power radios, such as the CC2420, have been widely popular with recent sensor platforms. This paper ex- plores the potential for energy savings from adding a high- power, high-bandwidth radio to current sensor platforms. High-bandwidth radios consume more power but signifi- cantly reduce the time for transmissions. Consequently, they offer net savings in total communication energy when there is enough data to offset wake-up energy overhead. The analysis on energy characteristics of several IEEE 802.11 radios show that a feasible crossover point exists (in terms of data size) after which energy savings are possible. Based on this analysis, we present a bulk data transmission proto- col for dual radio systems. The results of simulations and prototype implementation show significant energy savings at the expense of introducing acceptable delay

    Improving Energy Conservation Using Bulk Transmission over High-Power Radios in Sensor Networks

    Get PDF
    International audienceLow power radios, such as the CC2420, have been widely popular with recent sensor platforms. This paper ex- plores the potential for energy savings from adding a high- power, high-bandwidth radio to current sensor platforms. High-bandwidth radios consume more power but signifi- cantly reduce the time for transmissions. Consequently, they offer net savings in total communication energy when there is enough data to offset wake-up energy overhead. The analysis on energy characteristics of several IEEE 802.11 radios show that a feasible crossover point exists (in terms of data size) after which energy savings are possible. Based on this analysis, we present a bulk data transmission proto- col for dual radio systems. The results of simulations and prototype implementation show significant energy savings at the expense of introducing acceptable delay

    JTP: An Energy-conscious Transport Protocol for Wireless Ad Hoc Networks

    Full text link
    Within a recently developed low-power ad hoc network system, we present a transport protocol (JTP) whose goal is to reduce power consumption without trading off delivery requirements of applications. JTP has the following features: it is lightweight whereby end-nodes control in-network actions by encoding delivery requirements in packet headers; JTP enables applications to specify a range of reliability requirements, thus allocating the right energy budget to packets; JTP minimizes feedback control traffic from the destination by varying its frequency based on delivery requirements and stability of the network; JTP minimizes energy consumption by implementing in-network caching and increasing the chances that data retransmission requests from destinations "hit" these caches, thus avoiding costly source retransmissions; and JTP fairly allocates bandwidth among flows by backing off the sending rate of a source to account for in-network retransmissions on its behalf. Analysis and extensive simulations demonstrate the energy gains of JTP over one-size-fits-all transport protocols.Defense Advanced Research Projects Agency (AFRL FA8750-06-C-0199

    An Energy-conscious Transport Protocol for Multi-hop Wireless Networks

    Full text link
    We present a transport protocol whose goal is to reduce power consumption without compromising delivery requirements of applications. To meet its goal of energy efficiency, our transport protocol (1) contains mechanisms to balance end-to-end vs. local retransmissions; (2) minimizes acknowledgment traffic using receiver regulated rate-based flow control combined with selected acknowledgements and in-network caching of packets; and (3) aggressively seeks to avoid any congestion-based packet loss. Within a recently developed ultra low-power multi-hop wireless network system, extensive simulations and experimental results demonstrate that our transport protocol meets its goal of preserving the energy efficiency of the underlying network.Defense Advanced Research Projects Agency (NBCHC050053

    Remote monitoring cost minimization for an unreliable sensor network with guaranteed network throughput

    Get PDF
    AbstractIn this paper we consider a link-unreliable remote monitoring scenario where the monitoring center is geographically located far away from the region of the deployed sensor network, and sensing data by the sensors in the network will be transferred to the remote monitoring center through a third party telecommunication service. A cost associated with this service will be incurred, which will be determined by the number of gateways employed and the cumulative volume of data successfully received within a specified monitoring period. For this scenario, we first formulate a novel constrained optimization problem with an objective to minimize the service cost while a pre-defined network throughput is guaranteed. We refer to this problem as the throughput guaranteed service cost minimization problem and prove that it is NP-complete. We then propose a heuristic for it. The key ingredients of the heuristic include identifying gateways and finding an energy-efficient forest of routing trees rooted at the gateways. We also perform theoretical analysis on the solution obtained. Finally, we conduct experiments by simulations to evaluate the performance of the proposed algorithm. Experimental results demonstrate the proposed algorithm outperforms other algorithms in terms of both the service cost and the network lifetime

    A Power efficient pulsed MAC protocol for body area networks

    Get PDF
    The need for a reduction in healthcare cost has escalated over the past decade. Therefore, preventive medicine through remote health monitoring and Body Area Networks has gained more attention. This paper presents a novel Medium Access Control (MAC) protocol called Pulsed-MAC or simply PMAC to efficiently manage wireless communications in Body Area Networks. PMAC drastically extends the network life time by augmenting sensor nodes with charge pumping circuitry which harvest energy from a pulsed signal used to orchestrate communications. By measuring the average radio power consumption in a sensor node over a 24 hour simulation period, results show that PMAC outperforms conventional SMAC by up to three times and will easily allow for a Body Area Network to last beyond 200 days

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Distributed Localization of Active Transmitters in a Wireless Sensor Network

    Get PDF
    In today\u27s military environment, emphasis has been placed on bandwidth efficiency and total use of the available spectrum. Current communication standards divide the spectrum into several different frequency bands, all of which are assigned to one or multiple primary users. Cognitive Radio utilizes potential white spaces that exist between currently defined channels or in time. One under-explored dimension of white space exploration is spatial. If a frequency band is being used in one region, it may be underutilized, or not occupied in another. Using an active localization method can allow for the discovery of spatial white; trying to spatially map all of the frequencies in a large area would become very computationally intensive, and may even be impractical using modern centralized methods. Applying a distributed method and the concepts discussed in Wireless Distributed Computing to the problem can be scaled onto many small wireless sensors and could improve the measuring system\u27s effectiveness. For a bandwidth contested environment that must be spectrally mapped, three metrics stand out: Accuracy, Power Consumption, and Latency. All of these metrics must be explored and measured to determine which method could be most effectively applied to the spectral mapping of a spatial environment

    Design Experiences on Single and Multi Radio Systems in Wireless Embedded Platforms

    Get PDF
    The progress of radio technology has made several flavors of radio available on the market.Wireless sensor network platform designers have used these radios to build a variety of platforms. Withnew applications and different types of radios on wireless sensing nodes, it is often hard to interconnectdifferent types of networks. Hence, often additional radios have to be integrated onto existingplatforms or new platforms have to be built. Additionally, the energy consumption of these nodes have to be optimized to meetlifetime requirements of years without recharging.In this thesis, we address two issues of single and multi radio platform designfor wireless sensor network applications - engineering issues and energy optimization.We present a set of guiding principles from our design experiences while building 3 real life applications,namely asset tracking, burglar tracking and finally in-situ psychophysiological stress monitoring of human subjects in behavioral studies.In the asset tracking application, we present our design of a tag node that can be hidden inside valuable personal assets such asprinters or sofas in a home. If these items are stolen, a city wide anchor node infrastructure networkwould track them throughout the city. We also present our design for the anchor node.In the burglar tracking application, we present the design of tag nodes and the issueswe faced while integrating it with a GSM radio. Finally, we discuss our experiencesin designing a bridge node, that connects body worn physiological sensorsto a Bluetooth enabled mobile smartphone. We present the software framework that acts as middleware toconnect to the bridge, parse the sensor data, and send it to higher layers of the softwareframework.We describe 2 energy optimization schemes that are used in the Asset Tracking and the Burglar Tracking applications, that enhance the lifetime of the individual applications manifold.In the asset tracking application,we design a grouping scheme that helps increase reliability of detection of the tag nodes at theanchor nodes while reducing the energy consumption of the group of tag nodes travelling together.We achieve an increase of 5 times improvement in lifetime of the entire group. In the Burglar Tracking application, weuse sensing to determine when to turn the GSM radio on and transmit data by differentiatingturns and lane changes. This helps us reduce the number of times the GSM radio is woken up, thereby increasing thelifetime of the tag node while it is being tracked. This adds 8 minutes of trackablelifetime to the burglar tracking tag node. We conclude this thesis by observing the futuretrends of platform design and radio evolution
    • …
    corecore