14,262 research outputs found

    A General Framework for Anytime Approximation in Probabilistic Databases

    Get PDF
    Anytime approximation algorithms that compute the probabilities of queries over probabilistic databases can be of great use to statistical learning tasks. Those approaches have been based so far on either (i) sampling or (ii) branch-and-bound with model-based bounds. We present here a more general branch-and-bound framework that extends the possible bounds by using 'dissociation', which yields tighter bounds.Comment: 3 pages, 2 figures, submitted to StarAI 2018 Worksho

    Learning a Partitioning Advisor with Deep Reinforcement Learning

    Full text link
    Commercial data analytics products such as Microsoft Azure SQL Data Warehouse or Amazon Redshift provide ready-to-use scale-out database solutions for OLAP-style workloads in the cloud. While the provisioning of a database cluster is usually fully automated by cloud providers, customers typically still have to make important design decisions which were traditionally made by the database administrator such as selecting the partitioning schemes. In this paper we introduce a learned partitioning advisor for analytical OLAP-style workloads based on Deep Reinforcement Learning (DRL). The main idea is that a DRL agent learns its decisions based on experience by monitoring the rewards for different workloads and partitioning schemes. We evaluate our learned partitioning advisor in an experimental evaluation with different databases schemata and workloads of varying complexity. In the evaluation, we show that our advisor is not only able to find partitionings that outperform existing approaches for automated partitioning design but that it also can easily adjust to different deployments. This is especially important in cloud setups where customers can easily migrate their cluster to a new set of (virtual) machines

    Effect of heuristics on serendipity in path-based storytelling with linked data

    Get PDF
    Path-based storytelling with Linked Data on the Web provides users the ability to discover concepts in an entertaining and educational way. Given a query context, many state-of-the-art pathfinding approaches aim at telling a story that coincides with the user's expectations by investigating paths over Linked Data on the Web. By taking into account serendipity in storytelling, we aim at improving and tailoring existing approaches towards better fitting user expectations so that users are able to discover interesting knowledge without feeling unsure or even lost in the story facts. To this end, we propose to optimize the link estimation between - and the selection of facts in a story by increasing the consistency and relevancy of links between facts through additional domain delineation and refinement steps. In order to address multiple aspects of serendipity, we propose and investigate combinations of weights and heuristics in paths forming the essential building blocks for each story. Our experimental findings with stories based on DBpedia indicate the improvements when applying the optimized algorithm
    • …
    corecore