25 research outputs found

    Making Video Quality Assessment Models Robust to Bit Depth

    Full text link
    We introduce a novel feature set, which we call HDRMAX features, that when included into Video Quality Assessment (VQA) algorithms designed for Standard Dynamic Range (SDR) videos, sensitizes them to distortions of High Dynamic Range (HDR) videos that are inadequately accounted for by these algorithms. While these features are not specific to HDR, and also augment the equality prediction performances of VQA models on SDR content, they are especially effective on HDR. HDRMAX features modify powerful priors drawn from Natural Video Statistics (NVS) models by enhancing their measurability where they visually impact the brightest and darkest local portions of videos, thereby capturing distortions that are often poorly accounted for by existing VQA models. As a demonstration of the efficacy of our approach, we show that, while current state-of-the-art VQA models perform poorly on 10-bit HDR databases, their performances are greatly improved by the inclusion of HDRMAX features when tested on HDR and 10-bit distorted videos.Comment: Published in IEEE Signal Processing Letters 202

    Premium HDR : the impact of a single word on the quality of experience of HDR video

    Get PDF

    The economic transition and migration of Vietnam and the Mekong Delta region

    Get PDF
    Relationship between economic transition and migration has long attracted increasing attention of both policy-makers and researchers. Migration is seen as a response of changes during the economic transition in a country, because labour is an important production factor in the market, in which labourers have a desire to move to a place of better working conditions rather than going to a disadvantaged conditions (De Haas, 2010; Todaro, 1980).In this paper I extend this discussion by examining how effects of economic transition on internal migration since the late 1980s. This idea aims at gaining a broader insight into the relationship between economic transition and migration during the renovation processEconomic transition, migration

    The quality of experience of emerging display technologies

    Get PDF
    As new display technologies emerge and become part of everyday life, the understanding of the visual experience they provide becomes more relevant. The cognition of perception is the most vital component of visual experience; however, it is not the only cognition that contributes to the complex overall experience of the end-user. Expectations can create significant cognitive bias that may even override what the user genuinely perceives. Even if a visualization technology is somewhat novel, expectations can be fuelled by prior experiences gained from using similar displays and, more importantly, even a single word or an acronym may induce serious preconceptions, especially if such word suggests excellence in quality. In this interdisciplinary Ph.D. thesis, the effect of minimal, one-word labels on the Quality of Experience (QoE) is investigated in a series of subjective tests. In the studies carried out on an ultra-high-definition (UHD) display, UHD video contents were directly compared to their HD counterparts, with and without labels explicitly informing the test participants about the resolution of each stimulus. The experiments on High Dynamic Range (HDR) visualization addressed the effect of the word “premium” on the quality aspects of HDR video, and also how this may affect the perceived duration of stalling events. In order to support the findings, additional tests were carried out comparing the stalling detection thresholds of HDR video with conventional Low Dynamic Range (LDR) video. The third emerging technology addressed by this thesis is light field visualization. Due to its novel nature and the lack of comprehensive, exhaustive research on the QoE of light field displays and content parameters at the time of this thesis, instead of investigating the labeling effect, four phases of subjective studies were performed on light field QoE. The first phases started with fundamental research, and the experiments progressed towards the concept and evaluation of the dynamic adaptive streaming of light field video, introduced in the final phase

    User generated HDR gaming video streaming : dataset, codec comparison and challenges

    Get PDF
    Gaming video streaming services have grown tremendously in the past few years, with higher resolutions, higher frame rates and HDR gaming videos getting increasingly adopted among the gaming community. Since gaming content as such is different from non-gaming content, it is imperative to evaluate the performance of the existing encoders to help understand the bandwidth requirements of such services, as well as further improve the compression efficiency of such encoders. Towards this end, we present in this paper GamingHDRVideoSET, a dataset consisting of eighteen 10-bit UHD-HDR gaming videos and encoded video sequences using four different codecs, together with their objective evaluation results. The dataset is available online at [to be added after paper acceptance]. Additionally, the paper discusses the codec compression efficiency of most widely used practical encoders, i.e., x264 (H.264/AVC), x265 (H.265/HEVC) and libvpx (VP9), as well the recently proposed encoder libaom (AV1), on 10-bit, UHD-HDR content gaming content. Our results show that the latest compression standard AV1 results in the best compression efficiency, followed by HEVC, H.264, and VP9.Comment: 14 pages, 8 figures, submitted to IEEE journa

    Modeling Perceptual Trade-offs for Designing HDR Displays

    Get PDF
    Display technology has evolved in pursuit of perceptual pleasure by providing realism and visual impact. The endeavor of the evolution has brought HDR displays to the market. HDR displays, which have become the mainstream display technology recently, are considered not only the present but also the future of displays because of their daunting technical goals: A peak luminance of 10,000 cd/m^2 and near-monochromatic primaries. However, both positive and negative prospects in terms of perceptual aspects for future HDR displays coexist. On the positive side, it is expected that HDR displays will provide better image quality and more vivid color. On the negative side, apart from technical barriers such as production cost and power consumption, HDR displays will induce side effects, for example, observer metamerism, which refers to the phenomenon that color matches for one observer result in color mismatches for other observers. This particular side effect could be a severe issue in HDR displays as their narrow-band primaries likely worsen the color mismatches. Hence, critical to the success of future HDR displays is dealing properly with the perceptual trade-offs. In other words, future HDR display designers need to select physical specifications that maximize perceptual benefits while minimizing adverse effects. This dissertation aims at exploring both potentially positive and negative aspects of future HDR displays, using various perceptual assessments. In particular, the dissertation focuses on two physical factors of a display device: peak luminance and chromaticity color gamut, and the effects of the two factors on related human perception: image quality, observer metamerism, and colorfulness. The ultimate goal of this dissertation is to address the related human perception aroused by the physical factors and propose models to help design future HDR displays. In order to achieve the goal, the dissertation first addresses the image quality trade-off relationship between peak luminance and chromaticity color gamut. A psychophysical experiment was used to develop models to predict equivalent image quality under the trade-off between peak luminance and chromaticity gamut as a function of the perceptual attributes lightness and chroma. Second, a novel approach based on a computational evaluation to investigate potential observer metamerism in HDR displays was explored. This research shows how observer metamerism in HDR displays varies with varying peak luminance and chromaticity color gamut. This research aims at developing a straightforward model to predict observer metamerism in HDR displays based on the computational evaluation. Third, a psychophysical experiment to derive a colorfulness scale for very saturated colors is carried out. This experiment focuses on understanding how the sensitivity of the human visual system responds to highly-saturated colors that extend beyond the stimuli studied in previous research. The colorfulness scale would help both advanced lighting system and display system designers. Fourth, the dissertation suggests an evaluation tool devised based on the observer metamerism and colorfulness scale works that can be utilized to determine the physical specification of HDR displays, maximizing perceptually positive effects while minimizing perceptually negative effects at the same time
    corecore