470 research outputs found

    A Robust and Effective Smart-Card-Based Remote User Authentication Mechanism Using Hash Function

    Get PDF
    In a remote user authentication scheme, a remote server verifies whether a login user is genuine and trustworthy, and also for mutual authentication purpose a login user validates whether the remote server is genuine and trustworthy. Several remote user authentication schemes using the password, the biometrics, and the smart card have been proposed in the literature. However, most schemes proposed in the literature are either computationally expensive or insecure against several known attacks. In this paper, we aim to propose a new robust and effective password-based remote user authentication scheme using smart card. Our scheme is efficient, because our scheme uses only efficient one-way hash function and bitwise XOR operations. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. We perform the simulation for the formal security analysis using the widely accepted AVISPA (Automated Validation Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. Furthermore, our scheme supports efficiently the password change phase always locally without contacting the remote server and correctly. In addition, our scheme performs significantly better than other existing schemes in terms of communication, computational overheads, security, and features provided by our scheme

    Efficient and complete remote authentication scheme with smart cards

    Get PDF
    99學年度洪文斌升等參考著作[[abstract]]A complete remote authentication scheme should provide the following security properties: (1) mutual authentication, (2) session key exchange, (3) protection of user anonymity, (4) support of immediate revocation capability, (5) low communication and computation cost, (6) resistance to various kinds of attacks, (7) freely choosing and securely changing passwords by users, and (8) without storing password or verification tables in servers. However, none of the existing schemes meets all the requirements. In this paper, along the line of cost effective approach using hash functions for authentication, we propose an efficient and practical remote user authentication scheme with smart cards to support the above complete security properties.[[conferencetype]]國際[[conferencedate]]20080617~20080620[[booktype]]紙本[[booktype]]電子版[[conferencelocation]]Taipei, Taiwa

    Privacy protection for e-health systems by means of dynamic authentication and three-factor key agreement

    Get PDF
    During the past decade, the electronic healthcare (e-health) system has been evolved into a more patient-oriented service with smaller and smarter wireless devices. However, these convenient smart devices have limited computing capacity and memory size, which makes it harder to protect the user’s massive private data in the e-health system. Although some works have established a secure session key between the user and the medical server, the weaknesses still exist in preserving the anonymity with low energy consumption. Moreover, the misuse of biometric information in key agreement process may lead to privacy disclosure, which is irreparable. In this study, we design a dynamic privacy protection mechanism offering the biometric authentication at the server side whereas the exact value of the biometric template remains unknown to the server. And the user anonymity can be fully preserved during the authentication and key negotiation process because the messages transmitted with the proposed scheme are untraceable. Furthermore, the proposed scheme is proved to be semantic secure under the Real-or-Random Model. The performance analysis shows that the proposed scheme suits the e-health environment at the aspect of security and resource occupation

    An authentic-based privacy preservation protocol for smart e-healthcare systems in iot

    Get PDF
    © 2013 IEEE. Emerging technologies rapidly change the essential qualities of modern societies in terms of smart environments. To utilize the surrounding environment data, tiny sensing devices and smart gateways are highly involved. It has been used to collect and analyze the real-time data remotely in all Industrial Internet of Things (IIoT). Since the IIoT environment gathers and transmits the data over insecure public networks, a promising solution known as authentication and key agreement (AKA) is preferred to prevent illegal access. In the medical industry, the Internet of Medical Things (IoM) has become an expert application system. It is used to gather and analyze the physiological parameters of patients. To practically examine the medical sensor-nodes, which are imbedded in the patient\u27s body. It would in turn sense the patient medical information using smart portable devices. Since the patient information is so sensitive to reveal other than a medical professional, the security protection and privacy of medical data are becoming a challenging issue of the IoM. Thus, an anonymity-based user authentication protocol is preferred to resolve the privacy preservation issues in the IoM. In this paper, a Secure and Anonymous Biometric Based User Authentication Scheme (SAB-UAS) is proposed to ensure secure communication in healthcare applications. This paper also proves that an adversary cannot impersonate as a legitimate user to illegally access or revoke the smart handheld card. A formal analysis based on the random-oracle model and resource analysis is provided to show security and resource efficiencies in medical application systems. In addition, the proposed scheme takes a part of the performance analysis to show that it has high-security features to build smart healthcare application systems in the IoM. To this end, experimental analysis has been conducted for the analysis of network parameters using NS3 simulator. The collected results have shown superiority in terms of the packet delivery ratio, end-to-end delay, throughput rates, and routing overhead for the proposed SAB-UAS in comparison to other existing protocols
    corecore