66,428 research outputs found

    Supergravity for Effective Theories

    Full text link
    Higher-derivative operators are central elements of any effective field theory. In supersymmetric theories, these operators include terms with derivatives in the K\"ahler potential. We develop a toolkit for coupling such supersymmetric effective field theories to supergravity. We explain how to write the action for minimal supergravity coupled to chiral superfields with arbitrary numbers of derivatives and curvature couplings. We discuss two examples in detail, showing how the component actions agree with the expectations from the linearized description in terms of a Ferrara-Zumino multiplet. In a companion paper, we apply the formalism to the effective theory of inflation.Comment: 26 page

    Patch-recovery filters for curvature in discontinuous Galerkin-based level-set methods

    Full text link
    In two-phase flow simulations, a difficult issue is usually the treatment of surface tension effects. These cause a pressure jump that is proportional to the curvature of the interface separating the two fluids. Since the evaluation of the curvature incorporates second derivatives, it is prone to numerical instabilities. Within this work, the interface is described by a level-set method based on a discontinuous Galerkin discretization. In order to stabilize the evaluation of the curvature, a patch-recovery operation is employed. There are numerous ways in which this filtering operation can be applied in the whole process of curvature computation. Therefore, an extensive numerical study is performed to identify optimal settings for the patch-recovery operations with respect to computational cost and accuracy.Comment: 25 pages, 8 figures, submitted to Communications in Computational Physic

    Improving grasping forces during the manipulation of unknown objects

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksMany of the solutions proposed for the object manipulation problem are based on the knowledge of the object features. The approach proposed in this paper intends to provide a simple geometrical approach to securely manipulate an unknown object based only on tactile and kinematic information. The tactile and kinematic data obtained during the manipulation is used to recognize the object shape (at least the local object curvature), allowing to improve the grasping forces when this information is added to the manipulation strategy. The approach has been fully implemented and tested using the Schunk Dexterous Hand (SDH2). Experimental results are shown to illustrate the efficiency of the approach.Peer ReviewedPostprint (author's final draft
    • 

    corecore