31,576 research outputs found

    Model-based controller design for a plastic film extrusion process

    Get PDF
    This paper reports the development and implementation of a model-based cross-directional controller for plastic film extrusion and other web-forming processes. The controller design has a similar structure to that of internal model control (IMC) with the addition of an observer whose gain is designed to minimise process and model mis-match. The observer gain is obtained by solving a multi-objective optimisation through the application of a genetic algorithm and simulation results are presented in this paper demonstrating improvements that can be achieved by the proposed controller over two existing CD controllers

    Observer-based tuning of two-inertia servo-drive systems with integrated SAW torque transducers

    Get PDF
    This paper proposes controller design and tuning methodologies that facilitate the rejection of periodic load-side disturbances applied to a torsional mechanical system while simultaneously compensating for the observer’s inherent phase delay. This facilitates the use of lower-bandwidth practically realizable disturbance observers. The merits of implementing full- and reduced-order observers are investigated, with the latter being implemented with a new low-cost servo-machine-integrated highband width torque-sensing device based on surface acoustic wave (SAW) technology. Specifically, the authors’ previous work based on proportional–integral–derivative (PID) and resonance ratio control (RRC) controllers (IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1226–1237, Aug. 2006) is augmented with observer disturbance feedback. It is shown that higher-bandwidth disturbance observers are required to maximize disturbance attenuation over the low-frequency band (as well as the desired rejection frequency), thereby attenuating a wide range of possible frequencies. In such cases, therefore, it is shown that the RRC controller is the preferred solution since it can employ significantly higher observer bandwidth, when compared to PID counterparts, by virtue of reduced noise sensitivity. Furthermore, it is demonstrated that the prototype servo-machine-integrated 20-N · mSAWtorque transducer is not unduly affected by machine-generated electromagnetic noise and exhibits similar dynamic behavior as a conventional instrument inline torque transducer

    Modeling and control of a plastic film manufacturing web process

    Get PDF
    This paper is concerned with the modelling of aplastic film manufacturing process and the development and implementation of a model-based Cross-Directional (CD) controller. The model is derived from first-principles and some empirical relationships. The final validated nonlinear model could provide a useful off-line platform for developing control and monitoring algorithms.A new controller is designed which has a similar structureto that of Internal Model Control (IMC) with the addition ofan observer whose gain is designed to minimise process andmodel mis-match. The observer gain is obtained by solving amulti-objective optimisation problem through the application of a genetic algorithm. The controller is applied to the nonlinear model and simulation results are presented demonstrating improvements that can be achieved by the proposed controller over two existing CD controllers

    Improved performance of motor-drive systems by SAW shaft torque feedback

    Get PDF
    The paper describes the application of a non-contact, high bandwidth, low cost, SAW-based torque measuring system for improving the dynamic performance of industrial process motor-drive systems. Background to the SAW technology and its motor integration is discussed and a resonance ratio control (RRC) technique for the coordinated motion control of multi-inertia mechanical systems, based on the measurement of shaft torque via a SAW-based torque sensor is proposed. Furthermore, a new controller structure, RRC plus disturbance feedback is proposed, which enables the controller to be designed to independently satisfy tracking and regulation performance. A tuning method for the RRC structure is given based on the ITAE index, normalized as a function of the mechanical parameters enabling a direct performance comparison between a basic proportional and integral (PI) controller. The use of a reduced-order state observer is presented to provide a dynamic estimate of the load-side disturbance torque for a multi-inertia mechanical system, with an appraisal of the composite closed-loop dynamics. The control structures are experimentally validated and demonstrate significant improvement in dynamic tracking performance, whilst additionally rejecting periodic load side disturbances, a feature previously unrealisable except by other, high-gain control schemes that impose small stability margins

    SAW torque transducers for disturbance rejection and tracking control of multi-inertia servo-drive systems

    Get PDF
    The paper proposes a resonance ratio control (RRC) technique for the coordinated motion control of multi-inertia mechanical systems, based on the measurement of shaft torque via a SAW-based torque sensor. Furthermore, a new controller structure, RRC plus disturbance feedback is proposed, which enables the controller to be designed to independently satisfy tracking and regulation performance. A tuning method for the RRC structure is given based on the ITAE index, normalized as a function of the mechanical parameters enabling a direct performance comparison between a basic proportional and integral (PI) controller. The use of a reduced-order state observer is presented to provide a dynamic estimate of the load-side disturbance torque for a multi-inertia mechanical system, with an appraisal of the composite closed-loop dynamics. It is shown that the integrated formulation of the tuning criteria enables lower bandwidth observers to be implemented with a corresponding reduction in noise and computational load. The control structures are experimentally validated via a purpose designed test facility and demonstrate significant improvement in dynamic tracking performance, whilst additionally rejecting periodic load side disturbances, a feature previously unrealisable except by other, high-gain control schemes that impose small stability margins
    corecore