42,535 research outputs found

    Non-asymptotic Upper Bounds for Deletion Correcting Codes

    Full text link
    Explicit non-asymptotic upper bounds on the sizes of multiple-deletion correcting codes are presented. In particular, the largest single-deletion correcting code for qq-ary alphabet and string length nn is shown to be of size at most qn−q(q−1)(n−1)\frac{q^n-q}{(q-1)(n-1)}. An improved bound on the asymptotic rate function is obtained as a corollary. Upper bounds are also derived on sizes of codes for a constrained source that does not necessarily comprise of all strings of a particular length, and this idea is demonstrated by application to sets of run-length limited strings. The problem of finding the largest deletion correcting code is modeled as a matching problem on a hypergraph. This problem is formulated as an integer linear program. The upper bound is obtained by the construction of a feasible point for the dual of the linear programming relaxation of this integer linear program. The non-asymptotic bounds derived imply the known asymptotic bounds of Levenshtein and Tenengolts and improve on known non-asymptotic bounds. Numerical results support the conjecture that in the binary case, the Varshamov-Tenengolts codes are the largest single-deletion correcting codes.Comment: 18 pages, 4 figure

    Partial ovoids and partial spreads in symplectic and orthogonal polar spaces

    Get PDF
    We present improved lower bounds on the sizes of small maximal partial ovoids and small maximal partial spreads in the classical symplectic and orthogonal polar spaces, and improved upper bounds on the sizes of large maximal partial ovoids and large maximal partial spreads in the classical symplectic and orthogonal polar spaces. An overview of the status regarding these results is given in tables. The similar results for the hermitian classical polar spaces are presented in [J. De Beule, A. Klein, K. Metsch, L. Storme, Partial ovoids and partial spreads in hermitian polar spaces, Des. Codes Cryptogr. (in press)]

    New upper bounds for spherical codes and packings

    Full text link
    We improve the previously best known upper bounds on the sizes of θ\theta-spherical codes for every θ<θ∗≈62.997∘\theta<\theta^*\approx 62.997^{\circ} at least by a factor of 0.43250.4325, in sufficiently high dimensions. Furthermore, for sphere packing densities in dimensions n≥2000n\geq 2000 we have an improvement at least by a factor of 0.4325+51n0.4325+\frac{51}{n}. Our method also breaks many non-numerical sphere packing density bounds in small dimensions. Apart from Cohn and Zhao's \cite{CohnZhao} improvement on the geometric average of Levenshtein's bound \cite{Leven79} over all sufficiently high dimensions by a factor of 0.79,0.79, our work is the first improvement for each dimension since the work of Kabatyanskii and Levenshtein \cite{KL} and its later improvement by Levenshtein \cite{Leven79}. Moreover, we generalize Levenshtein's optimal polynomials and provide explicit formulae for them that may be of independent interest. For 0<θ<θ∗,0<\theta<\theta^*, we construct a test function for Delsarte's linear programing problem for θ\theta-spherical codes with exponentially improved factor in dimension compared to previous test functions.Comment: Comments are welcome

    Tables of subspace codes

    Get PDF
    One of the main problems of subspace coding asks for the maximum possible cardinality of a subspace code with minimum distance at least dd over Fqn\mathbb{F}_q^n, where the dimensions of the codewords, which are vector spaces, are contained in K⊆{0,1,…,n}K\subseteq\{0,1,\dots,n\}. In the special case of K={k}K=\{k\} one speaks of constant dimension codes. Since this (still) emerging field is very prosperous on the one hand side and there are a lot of connections to classical objects from Galois geometry it is a bit difficult to keep or to obtain an overview about the current state of knowledge. To this end we have implemented an on-line database of the (at least to us) known results at \url{subspacecodes.uni-bayreuth.de}. The aim of this recurrently updated technical report is to provide a user guide how this technical tool can be used in research projects and to describe the so far implemented theoretic and algorithmic knowledge.Comment: 44 pages, 6 tables, 7 screenshot

    On the lengths of divisible codes

    Get PDF
    In this article, the effective lengths of all qrq^r-divisible linear codes over Fq\mathbb{F}_q with a non-negative integer rr are determined. For that purpose, the Sq(r)S_q(r)-adic expansion of an integer nn is introduced. It is shown that there exists a qrq^r-divisible Fq\mathbb{F}_q-linear code of effective length nn if and only if the leading coefficient of the Sq(r)S_q(r)-adic expansion of nn is non-negative. Furthermore, the maximum weight of a qrq^r-divisible code of effective length nn is at most σqr\sigma q^r, where σ\sigma denotes the cross-sum of the Sq(r)S_q(r)-adic expansion of nn. This result has applications in Galois geometries. A recent theorem of N{\u{a}}stase and Sissokho on the maximum size of a partial spread follows as a corollary. Furthermore, we get an improvement of the Johnson bound for constant dimension subspace codes.Comment: 17 pages, typos corrected; the paper was originally named "An improvement of the Johnson bound for subspace codes

    Estimates on the Size of Symbol Weight Codes

    Full text link
    The study of codes for powerlines communication has garnered much interest over the past decade. Various types of codes such as permutation codes, frequency permutation arrays, and constant composition codes have been proposed over the years. In this work we study a type of code called the bounded symbol weight codes which was first introduced by Versfeld et al. in 2005, and a related family of codes that we term constant symbol weight codes. We provide new upper and lower bounds on the size of bounded symbol weight and constant symbol weight codes. We also give direct and recursive constructions of codes for certain parameters.Comment: 14 pages, 4 figure
    • …
    corecore