15,228 research outputs found

    Development an accurate and stable range-free localization scheme for anisotropic wireless sensor networks

    Get PDF
    With the high-speed development of wireless radio technology, numerous sensor nodes are integrated into wireless sensor networks, which has promoted plentiful location-based applications that are successfully applied in various fields, such as monitoring natural disasters and post-disaster rescue. Location information is an integral part of wireless sensor networks, without location information, all received data will lose meaning. However, the current localization scheme is based on equipped GPS on every node, which is not cost-efficient and not suitable for large-scale wireless sensor networks and outdoor environments. To address this problem, research scholars have proposed a rangefree localization scheme which only depends on network connectivity. Nevertheless, as the representative range-free localization scheme, Distance Vector-Hop (DV-Hop) localization algorithm demonstrates extremely poor localization accuracy under anisotropic wireless sensor networks. The previous works assumed that the network environment is evenly and uniformly distributed, ignored anisotropic factors in a real setting. Besides, most research academics improved the localization accuracy to a certain degree, but at expense of high communication overhead and computational complexity, which cannot meet the requirements of high-precision applications for anisotropic wireless sensor networks. Hence, finding a fast, accurate, and strong solution to solve the range-free localization problem is still a big challenge. Accordingly, this study aspires to bridge the research gap by exploring a new DV-Hop algorithm to build a fast, costefficient, strong range-free localization scheme. This study developed an optimized variation of the DV-Hop localization algorithm for anisotropic wireless sensor networks. To address the poor localization accuracy problem in irregular C-shaped network topology, it adopts an efficient Grew Wolf Optimizer instead of the least-squares method. The dynamic communication range is introduced to refine hop between anchor nodes, and new parameters are recommended to optimize network protocol to balance energy cost in the initial step. Besides, the weighted coefficient and centroid algorithm is employed to reduce cumulative error by hop count and cut down computational complexity. The developed localization framework is separately validated and evaluated each optimized step under various evaluation criteria, in terms of accuracy, stability, and cost, etc. The results of EGWO-DV-Hop demonstrated superior localization accuracy under both topologies, the average localization error dropped up to 87.79% comparing with basic DV-Hop under C-shaped topology. The developed enhanced DWGWO-DVHop localization algorithm illustrated a favorable result with high accuracy and strong stability. The overall localization error is around 1.5m under C-shaped topology, while the traditional DV-Hop algorithm is large than 20m. Generally, the average localization error went down up to 93.35%, compared with DV-Hop. The localization accuracy and robustness of comparison indicated that the developed DWGWO-DV-Hop algorithm super outperforms the other classical range-free methods. It has the potential significance to be guided and applied in practical location-based applications for anisotropic wireless sensor networks

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Locating sensors with fuzzy logic algorithms

    Get PDF
    In a system formed by hundreds of sensors deployed in a huge area it is important to know the position where every sensor is. This information can be obtained using several methods. However, if the number of sensors is high and the deployment is based on ad-hoc manner, some auto-locating techniques must be implemented. In this paper we describe a novel algorithm based on fuzzy logic with the objective of estimating the location of sensors according to the knowledge of the position of some reference nodes. This algorithm, called LIS (Localization based on Intelligent Sensors) is executed distributively along a wireless sensor network formed by hundreds of nodes, covering a huge area. The evaluation of LIS is led by simulation tests. The result obtained shows that LIS is a promising method that can easily solve the problem of knowing where the sensors are located.Junta de Andalucía P07-TIC-0247

    LIS: Localization based on an intelligent distributed fuzzy system applied to a WSN

    Get PDF
    The localization of the sensor nodes is a fundamental problem in wireless sensor networks. There are a lot of different kinds of solutions in the literature. Some of them use external devices like GPS, while others use special hardware or implicit parameters in wireless communications. In applications like wildlife localization in a natural environment, where the power available and the weight are big restrictions, the use of hungry energy devices like GPS or hardware that add extra weight like mobile directional antenna is not a good solution. Due to these reasons it would be better to use the localization’s implicit characteristics in communications, such as connectivity, number of hops or RSSI. The measurement related to these parameters are currently integrated in most radio devices. These measurement techniques are based on the beacons’ transmissions between the devices. In the current study, a novel tracking distributed method, called LIS, for localization of the sensor nodes using moving devices in a network of static nodes, which have no additional hardware requirements is proposed. The position is obtained with the combination of two algorithms; one based on a local node using a fuzzy system to obtain a partial solution and the other based on a centralized method which merges all the partial solutions. The centralized algorithm is based on the calculation of the centroid of the partial solutions. Advantages of using fuzzy system versus the classical Centroid Localization (CL) algorithm without fuzzy preprocessing are compared with an ad hoc simulator made for testing localization algorithms. With this simulator, it is demonstrated that the proposed method obtains less localization errors and better accuracy than the centroid algorithm.Junta de Andalucía P07-TIC-0247

    Sparse Localization with a Mobile Beacon Based on LU Decomposition in Wireless Sensor Networks

    Get PDF
    Node localization is the core in wireless sensor network. It can be solved by powerful beacons, which are equipped with global positioning system devices to know their location information. In this article, we present a novel sparse localization approach with a mobile beacon based on LU decomposition. Our scheme firstly translates node localization problem into a 1-sparse vector recovery problem by establishing sparse localization model. Then, LU decomposition pre-processing is adopted to solve the problem that measurement matrix does not meet the re¬stricted isometry property. Later, the 1-sparse vector can be exactly recovered by compressive sensing. Finally, as the 1-sparse vector is approximate sparse, weighted Cen¬troid scheme is introduced to accurately locate the node. Simulation and analysis show that our scheme has better localization performance and lower requirement for the mobile beacon than MAP+GC, MAP-M, and MAP-M&N schemes. In addition, the obstacles and DOI have little effect on the novel scheme, and it has great localization performance under low SNR, thus, the scheme proposed is robust
    corecore