129 research outputs found

    Quantum Algorithms for Finding Constant-sized Sub-hypergraphs

    Full text link
    We develop a general framework to construct quantum algorithms that detect if a 33-uniform hypergraph given as input contains a sub-hypergraph isomorphic to a prespecified constant-sized hypergraph. This framework is based on the concept of nested quantum walks recently proposed by Jeffery, Kothari and Magniez [SODA'13], and extends the methodology designed by Lee, Magniez and Santha [SODA'13] for similar problems over graphs. As applications, we obtain a quantum algorithm for finding a 44-clique in a 33-uniform hypergraph on nn vertices with query complexity O(n1.883)O(n^{1.883}), and a quantum algorithm for determining if a ternary operator over a set of size nn is associative with query complexity O(n2.113)O(n^{2.113}).Comment: 18 pages; v2: changed title, added more backgrounds to the introduction, added another applicatio

    Improved Quantum Algorithm for Triangle Finding via Combinatorial Arguments

    Full text link
    In this paper we present a quantum algorithm solving the triangle finding problem in unweighted graphs with query complexity O~(n5/4)\tilde O(n^{5/4}), where nn denotes the number of vertices in the graph. This improves the previous upper bound O(n9/7)=O(n1.285...)O(n^{9/7})=O(n^{1.285...}) recently obtained by Lee, Magniez and Santha. Our result shows, for the first time, that in the quantum query complexity setting unweighted triangle finding is easier than its edge-weighted version, since for finding an edge-weighted triangle Belovs and Rosmanis proved that any quantum algorithm requires Ω(n9/7/logn)\Omega(n^{9/7}/\sqrt{\log n}) queries. Our result also illustrates some limitations of the non-adaptive learning graph approach used to obtain the previous O(n9/7)O(n^{9/7}) upper bound since, even over unweighted graphs, any quantum algorithm for triangle finding obtained using this approach requires Ω(n9/7/logn)\Omega(n^{9/7}/\sqrt{\log n}) queries as well. To bypass the obstacles characterized by these lower bounds, our quantum algorithm uses combinatorial ideas exploiting the graph-theoretic properties of triangle finding, which cannot be used when considering edge-weighted graphs or the non-adaptive learning graph approach.Comment: 17 pages, to appear in FOCS'14; v2: minor correction

    Quantum Algorithm for Triangle Finding in Sparse Graphs

    Full text link
    This paper presents a quantum algorithm for triangle finding over sparse graphs that improves over the previous best quantum algorithm for this task by Buhrman et al. [SIAM Journal on Computing, 2005]. Our algorithm is based on the recent O~(n5/4)\tilde O(n^{5/4})-query algorithm given by Le Gall [FOCS 2014] for triangle finding over dense graphs (here nn denotes the number of vertices in the graph). We show in particular that triangle finding can be solved with O(n5/4ϵ)O(n^{5/4-\epsilon}) queries for some constant ϵ>0\epsilon>0 whenever the graph has at most O(n2c)O(n^{2-c}) edges for some constant c>0c>0.Comment: 13 page

    Quantum Distributed Algorithm for Triangle Finding in the CONGEST Model

    Get PDF

    Multiparty Quantum Communication Complexity of Triangle Finding

    Get PDF
    Triangle finding (deciding if a graph contains a triangle or not) is a central problem in quantum query complexity. The quantum communication complexity of this problem, where the edges of the graph are distributed among the players, was considered recently by Ivanyos et al. in the two- party setting. In this paper we consider its k-party quantum communication complexity with k >= 3. Our main result is a ~O(m^(7/12))-qubit protocol, for any constant number of players k, deciding with high probability if a graph with m edges contains a triangle or not. Our approach makes connections between the multiparty quantum communication complexity of triangle finding and the quantum query complexity of graph collision, a well-studied problem in quantum query complexity

    On the Power of Non-Adaptive Learning Graphs

    Full text link
    We introduce a notion of the quantum query complexity of a certificate structure. This is a formalisation of a well-known observation that many quantum query algorithms only require the knowledge of the disposition of possible certificates in the input string, not the precise values therein. Next, we derive a dual formulation of the complexity of a non-adaptive learning graph, and use it to show that non-adaptive learning graphs are tight for all certificate structures. By this, we mean that there exists a function possessing the certificate structure and such that a learning graph gives an optimal quantum query algorithm for it. For a special case of certificate structures generated by certificates of bounded size, we construct a relatively general class of functions having this property. The construction is based on orthogonal arrays, and generalizes the quantum query lower bound for the kk-sum problem derived recently in arXiv:1206.6528. Finally, we use these results to show that the learning graph for the triangle problem from arXiv:1210.1014 is almost optimal in these settings. This also gives a quantum query lower bound for the triangle-sum problem.Comment: 16 pages, 1.5 figures v2: the main result generalised for all certificate structures, a bug in the proof of Proposition 17 fixe
    corecore