36,102 research outputs found

    Multilingual Adaptation of RNN Based ASR Systems

    Full text link
    In this work, we focus on multilingual systems based on recurrent neural networks (RNNs), trained using the Connectionist Temporal Classification (CTC) loss function. Using a multilingual set of acoustic units poses difficulties. To address this issue, we proposed Language Feature Vectors (LFVs) to train language adaptive multilingual systems. Language adaptation, in contrast to speaker adaptation, needs to be applied not only on the feature level, but also to deeper layers of the network. In this work, we therefore extended our previous approach by introducing a novel technique which we call "modulation". Based on this method, we modulated the hidden layers of RNNs using LFVs. We evaluated this approach in both full and low resource conditions, as well as for grapheme and phone based systems. Lower error rates throughout the different conditions could be achieved by the use of the modulation.Comment: 5 pages, 1 figure, to appear in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018

    Multilingual Training and Cross-lingual Adaptation on CTC-based Acoustic Model

    Full text link
    Multilingual models for Automatic Speech Recognition (ASR) are attractive as they have been shown to benefit from more training data, and better lend themselves to adaptation to under-resourced languages. However, initialisation from monolingual context-dependent models leads to an explosion of context-dependent states. Connectionist Temporal Classification (CTC) is a potential solution to this as it performs well with monophone labels. We investigate multilingual CTC in the context of adaptation and regularisation techniques that have been shown to be beneficial in more conventional contexts. The multilingual model is trained to model a universal International Phonetic Alphabet (IPA)-based phone set using the CTC loss function. Learning Hidden Unit Contribution (LHUC) is investigated to perform language adaptive training. In addition, dropout during cross-lingual adaptation is also studied and tested in order to mitigate the overfitting problem. Experiments show that the performance of the universal phoneme-based CTC system can be improved by applying LHUC and it is extensible to new phonemes during cross-lingual adaptation. Updating all the parameters shows consistent improvement on limited data. Applying dropout during adaptation can further improve the system and achieve competitive performance with Deep Neural Network / Hidden Markov Model (DNN/HMM) systems on limited data

    Not All Dialogues are Created Equal: Instance Weighting for Neural Conversational Models

    Full text link
    Neural conversational models require substantial amounts of dialogue data for their parameter estimation and are therefore usually learned on large corpora such as chat forums or movie subtitles. These corpora are, however, often challenging to work with, notably due to their frequent lack of turn segmentation and the presence of multiple references external to the dialogue itself. This paper shows that these challenges can be mitigated by adding a weighting model into the architecture. The weighting model, which is itself estimated from dialogue data, associates each training example to a numerical weight that reflects its intrinsic quality for dialogue modelling. At training time, these sample weights are included into the empirical loss to be minimised. Evaluation results on retrieval-based models trained on movie and TV subtitles demonstrate that the inclusion of such a weighting model improves the model performance on unsupervised metrics.Comment: Accepted to SIGDIAL 201

    Semi-tied Units for Efficient Gating in LSTM and Highway Networks

    Full text link
    Gating is a key technique used for integrating information from multiple sources by long short-term memory (LSTM) models and has recently also been applied to other models such as the highway network. Although gating is powerful, it is rather expensive in terms of both computation and storage as each gating unit uses a separate full weight matrix. This issue can be severe since several gates can be used together in e.g. an LSTM cell. This paper proposes a semi-tied unit (STU) approach to solve this efficiency issue, which uses one shared weight matrix to replace those in all the units in the same layer. The approach is termed "semi-tied" since extra parameters are used to separately scale each of the shared output values. These extra scaling factors are associated with the network activation functions and result in the use of parameterised sigmoid, hyperbolic tangent, and rectified linear unit functions. Speech recognition experiments using British English multi-genre broadcast data showed that using STUs can reduce the calculation and storage cost by a factor of three for highway networks and four for LSTMs, while giving similar word error rates to the original models.Comment: To appear in Proc. INTERSPEECH 2018, September 2-6, 2018, Hyderabad, Indi
    • …
    corecore