23 research outputs found

    Music Similarity Estimation

    Get PDF
    Music is a complicated form of communication, where creators and culture communicate and expose their individuality. After music digitalization took place, recommendation systems and other online services have become indispensable in the field of Music Information Retrieval (MIR). To build these systems and recommend the right choice of song to the user, classification of songs is required. In this paper, we propose an approach for finding similarity between music based on mid-level attributes like pitch, midi value corresponding to pitch, interval, contour and duration and applying text based classification techniques. Our system predicts jazz, metal and ragtime for western music. The experiment to predict the genre of music is conducted based on 450 music files and maximum accuracy achieved is 95.8% across different n-grams. We have also analyzed the Indian classical Carnatic music and are classifying them based on its raga. Our system predicts Sankarabharam, Mohanam and Sindhubhairavi ragas. The experiment to predict the raga of the song is conducted based on 95 music files and the maximum accuracy achieved is 90.3% across different n-grams. Performance evaluation is done by using the accuracy score of scikit-learn

    Deep Cross-Modal Correlation Learning for Audio and Lyrics in Music Retrieval

    Get PDF
    Deep cross-modal learning has successfully demonstrated excellent performance in cross-modal multimedia retrieval, with the aim of learning joint representations between different data modalities. Unfortunately, little research focuses on cross-modal correlation learning where temporal structures of different data modalities such as audio and lyrics should be taken into account. Stemming from the characteristic of temporal structures of music in nature, we are motivated to learn the deep sequential correlation between audio and lyrics. In this work, we propose a deep cross-modal correlation learning architecture involving two-branch deep neural networks for audio modality and text modality (lyrics). Data in different modalities are converted to the same canonical space where inter modal canonical correlation analysis is utilized as an objective function to calculate the similarity of temporal structures. This is the first study that uses deep architectures for learning the temporal correlation between audio and lyrics. A pre-trained Doc2Vec model followed by fully-connected layers is used to represent lyrics. Two significant contributions are made in the audio branch, as follows: i) We propose an end-to-end network to learn cross-modal correlation between audio and lyrics, where feature extraction and correlation learning are simultaneously performed and joint representation is learned by considering temporal structures. ii) As for feature extraction, we further represent an audio signal by a short sequence of local summaries (VGG16 features) and apply a recurrent neural network to compute a compact feature that better learns temporal structures of music audio. Experimental results, using audio to retrieve lyrics or using lyrics to retrieve audio, verify the effectiveness of the proposed deep correlation learning architectures in cross-modal music retrieval

    Environmental Sound Recognition using Masked Conditional Neural Networks

    Full text link
    Neural network based architectures used for sound recognition are usually adapted from other application domains, which may not harness sound related properties. The ConditionaL Neural Network (CLNN) is designed to consider the relational properties across frames in a temporal signal, and its extension the Masked ConditionaL Neural Network (MCLNN) embeds a filterbank behavior within the network, which enforces the network to learn in frequency bands rather than bins. Additionally, it automates the exploration of different feature combinations analogous to handcrafting the optimum combination of features for a recognition task. We applied the MCLNN to the environmental sounds of the ESC-10 dataset. The MCLNN achieved competitive accuracies compared to state-of-the-art convolutional neural networks and hand-crafted attempts.Comment: Boltzmann Machine, RBM, Conditional RBM, CRBM, Deep Neural Network, DNN, Conditional Neural Network, CLNN, Masked Conditional Neural Net-work, MCLNN, Environmental Sound Recognition, ESR, Advanced Data Mining and Applications (ADMA) Year: 201
    corecore