102,086 research outputs found

    Improved bounds for the dimensions of planar distance sets

    Get PDF
    We obtain new lower bounds on the Hausdorff dimension of distance sets and pinned distance sets of planar Borel sets of dimension slightly larger than 1, improving recent estimates of Keleti and Shmerkin, and of Liu in this regime. In particular, we prove that if dimH .A/ > 1, then the set of distances spanned by points of A has Hausdorff dimension at least 40=57 > 0:7 and there are many y 2 A such that the pinned distance set 1jx -yjW x 2 Aºhas Hausdorff dimension at least 29=42 and lower box-counting dimension at least 40=57. We use the approach and many results from the earlier work of Keleti and Shmerkin, but incorporate estimates from the recent work of Guth, Iosevich, Ou and Wang as additional input.Fil: Shmerkin, Pablo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. University of British Columbia; Canad

    Better Lower Bounds for Shortcut Sets and Additive Spanners via an Improved Alternation Product

    Full text link
    We obtain improved lower bounds for additive spanners, additive emulators, and diameter-reducing shortcut sets. Spanners and emulators are sparse graphs that approximately preserve the distances of a given graph. A shortcut set is a set of edges that when added to a directed graph, decreases its diameter. The previous best known lower bounds for these three structures are given by Huang and Pettie [SWAT 2018]. For O(n)O(n)-sized spanners, we improve the lower bound on the additive stretch from Ω(n1/11)\Omega(n^{1/11}) to Ω(n2/21)\Omega(n^{2/21}). For O(n)O(n)-sized emulators, we improve the lower bound on the additive stretch from Ω(n1/18)\Omega(n^{1/18}) to Ω(n2/29)\Omega(n^{2/29}). For O(m)O(m)-sized shortcut sets, we improve the lower bound on the graph diameter from Ω(n1/11)\Omega(n^{1/11}) to Ω(n1/8)\Omega(n^{1/8}). Our key technical contribution, which is the basis of all of our bounds, is an improvement of a graph product known as an alternation product.Comment: To appear in SODA 202

    Improved Lower Bounds for Ginzburg-Landau Energies via Mass Displacement

    Full text link
    We prove some improved estimates for the Ginzburg-Landau energy (with or without magnetic field) in two dimensions, relating the asymptotic energy of an arbitrary configuration to its vortices and their degrees, with possibly unbounded numbers of vortices. The method is based on a localisation of the ``ball construction method" combined with a mass displacement idea which allows to compensate for negative errors in the ball construction estimates by energy ``displaced" from close by. Under good conditions, our main estimate allows to get a lower bound on the energy which includes a finite order ``renormalized energy" of vortex interaction, up to the best possible precision i.e. with only a o(1)o(1) error per vortex, and is complemented by local compactness results on the vortices. This is used crucially in a forthcoming paper relating minimizers of the Ginzburg-Landau energy with the Abrikosov lattice. It can also serve to provide lower bounds for weighted Ginzburg-Landau energies.Comment: 43 pages, to appear in "Analysis & PDE

    Geometric lower bounds for generalized ranks

    Full text link
    We revisit a geometric lower bound for Waring rank of polynomials (symmetric rank of symmetric tensors) of Landsberg and Teitler and generalize it to a lower bound for rank with respect to arbitrary varieties, improving the bound given by the "non-Abelian" catalecticants recently introduced by Landsberg and Ottaviani. This is applied to give lower bounds for ranks of multihomogeneous polynomials (partially symmetric tensors); a special case is the simultaneous Waring decomposition problem for a linear system of polynomials. We generalize the classical Apolarity Lemma to multihomogeneous polynomials and give some more general statements. Finally we revisit the lower bound of Ranestad and Schreyer, and again generalize it to multihomogeneous polynomials and some more general settings.Comment: 43 pages. v2: minor change

    A Tight Lower Bound for Counting Hamiltonian Cycles via Matrix Rank

    Get PDF
    For even kk, the matchings connectivity matrix Mk\mathbf{M}_k encodes which pairs of perfect matchings on kk vertices form a single cycle. Cygan et al. (STOC 2013) showed that the rank of Mk\mathbf{M}_k over Z2\mathbb{Z}_2 is Θ(2k)\Theta(\sqrt 2^k) and used this to give an O∗((2+2)pw)O^*((2+\sqrt{2})^{\mathsf{pw}}) time algorithm for counting Hamiltonian cycles modulo 22 on graphs of pathwidth pw\mathsf{pw}. The same authors complemented their algorithm by an essentially tight lower bound under the Strong Exponential Time Hypothesis (SETH). This bound crucially relied on a large permutation submatrix within Mk\mathbf{M}_k, which enabled a "pattern propagation" commonly used in previous related lower bounds, as initiated by Lokshtanov et al. (SODA 2011). We present a new technique for a similar pattern propagation when only a black-box lower bound on the asymptotic rank of Mk\mathbf{M}_k is given; no stronger structural insights such as the existence of large permutation submatrices in Mk\mathbf{M}_k are needed. Given appropriate rank bounds, our technique yields lower bounds for counting Hamiltonian cycles (also modulo fixed primes pp) parameterized by pathwidth. To apply this technique, we prove that the rank of Mk\mathbf{M}_k over the rationals is 4k/poly(k)4^k / \mathrm{poly}(k). We also show that the rank of Mk\mathbf{M}_k over Zp\mathbb{Z}_p is Ω(1.97k)\Omega(1.97^k) for any prime p≠2p\neq 2 and even Ω(2.15k)\Omega(2.15^k) for some primes. As a consequence, we obtain that Hamiltonian cycles cannot be counted in time O∗((6−ϵ)pw)O^*((6-\epsilon)^{\mathsf{pw}}) for any ϵ>0\epsilon>0 unless SETH fails. This bound is tight due to a O∗(6pw)O^*(6^{\mathsf{pw}}) time algorithm by Bodlaender et al. (ICALP 2013). Under SETH, we also obtain that Hamiltonian cycles cannot be counted modulo primes p≠2p\neq 2 in time O∗(3.97pw)O^*(3.97^\mathsf{pw}), indicating that the modulus can affect the complexity in intricate ways.Comment: improved lower bounds modulo primes, improved figures, to appear in SODA 201

    Lower bounds for the spinless Salpeter equation

    Full text link
    We obtain lower bounds on the ground state energy, in one and three dimensions, for the spinless Salpeter equation (Schr\"odinger equation with a relativistic kinetic energy operator) applicable to potentials for which the attractive parts are in Lp(Rn)L^p(\R^n) for some p>np>n (n=1n=1 or 3). An extension to confining potentials, which are not in Lp(Rn)L^p(\R^n), is also presented.Comment: 11 pages, 2 figures. Contribution to a special issue of Journal of Nonlinear Mathematical Physics in honour of Francesco Calogero on the occasion of his seventieth birthda
    • …
    corecore