1,975 research outputs found

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201

    CNN Architectures for Large-Scale Audio Classification

    Full text link
    Convolutional Neural Networks (CNNs) have proven very effective in image classification and show promise for audio. We use various CNN architectures to classify the soundtracks of a dataset of 70M training videos (5.24 million hours) with 30,871 video-level labels. We examine fully connected Deep Neural Networks (DNNs), AlexNet [1], VGG [2], Inception [3], and ResNet [4]. We investigate varying the size of both training set and label vocabulary, finding that analogs of the CNNs used in image classification do well on our audio classification task, and larger training and label sets help up to a point. A model using embeddings from these classifiers does much better than raw features on the Audio Set [5] Acoustic Event Detection (AED) classification task.Comment: Accepted for publication at ICASSP 2017 Changes: Added definitions of mAP, AUC, and d-prime. Updated mAP/AUC/d-prime numbers for Audio Set based on changes of latest Audio Set revision. Changed wording to fit 4 page limit with new addition

    ProTeCt: Prompt Tuning for Hierarchical Consistency

    Full text link
    Large visual-language models, like CLIP, learn generalized representations and have shown promising zero-shot performance. Few-shot adaptation methods, based on prompt tuning, have also been shown to further improve performance on downstream datasets. However, these models are not hierarchically consistent. Frequently, they infer incorrect labels at coarser taxonomic class levels, even when the inference at the leaf level (original class labels) is correct. This is problematic, given their support for open set classification and, in particular, open-grained classification, where practitioners define label sets at various levels of granularity. To address this problem, we propose a prompt tuning technique to calibrate the hierarchical consistency of model predictions. A set of metrics of hierarchical consistency, the Hierarchical Consistent Accuracy (HCA) and the Mean Treecut Accuracy (MTA), are first proposed to benchmark model performance in the open-granularity setting. A prompt tuning technique, denoted as Prompt Tuning for Hierarchical Consistency (ProTeCt), is then proposed to calibrate classification across all possible label set granularities. Results show that ProTeCt can be combined with existing prompt tuning methods to significantly improve open-granularity classification performance without degradation of the original classification performance at the leaf level
    • …
    corecore