1 research outputs found

    A new forward-scatter visibility sensor based on a universal frequency-to-digital converter

    Full text link
    Traffic delays attributable to weather conditions may cause an increase in fuel consumption and then an increase in CO2 emissions to the environment. Visibility reduction in roads due to dense fog is a main cause of traffic accidents and possible environmental pollution, hence the importance of deploying fog warning systems. In this article, we present a forward-scatter visibility sensor that uses a quasi-digital photodetector and a universal frequency-to-digital converter instead of a conventional analog-to-digital converter as data acquisition system. This feature has allowed the design of a low-cost, robust, and simple sensor-to-microcontroller interface as demanded by Intelligent Transportation Systems (ITS) applications. An optical system to limit light interference is proposed. The visibilimeter was calibrated from a self-calibrated transmissometer using the same frequency-to-digital technique. This new instrument is capable of a 41 662.5m visibility range detection and to transmit the information wirelessly to a 100m distance.The authors would like to thank the Universidad Autonoma Metropolitana-Azcapotzalco and the Universidad Politecnica de Valencia for their support.Barrales Guadarrama, R.; Mocholí Salcedo, A.; Rodríguez Rodríguez, M.; Barrales Guadarrame, VR.; Vázquez Cerón, ER. (2013). A new forward-scatter visibility sensor based on a universal frequency-to-digital converter. Instrumentation Science and Technology. 41:445-462. doi:10.1080/10739149.2013.780250S44546241News Section, p. 8, (April-March 2009), ITS International Electronic Magazine [Online]. Available: www.itsinternational.comBandivadekar , A. ; Bodek , K. ; Cheah , L. ; Evans , C. ; Groode , T. ; Heywood , J. ; Kasseris , E. ; Kromer , M. ; Weiss , M. On the Road in 2035: Reducing Transportation's Petroleum Consumption and GHG Emissions. Report No. LFEE 2008–05 RP, MIT Laboratory for Energy and the Environment, Cambridge, Massachusetts, 2008.Schrank , D. ; Lomax , T. ; Turner , S. TTI's Urban Mobility Report 2010 [Online]. Avalaible: http://tti.tamu.edu/publications/catalog/record/?id=36580.Bradley , J. T. ; Kraus , K. ; Townshend , T. Federal Citing Criteria for Automated Surface Weather Observations. 7th Symp. On Meteorological Observations and Instrumentation, New Orleans, LA, 1991, 207–210.Winstanley, J. V., & Adams, M. J. (1975). Point Visibility Meter: a forward scatter instrument for the measurement of aerosol extinction coefficient. Applied Optics, 14(9), 2151. doi:10.1364/ao.14.002151Horner, J. L. (1976). Analog visibility computer. Applied Optics, 15(4), 999. doi:10.1364/ao.15.000999Twomey, S., & Howell, H. B. (1965). The Relative Merit of White and Monochromatic Light for the Determination of Visibility by Backscattering Measurements. Applied Optics, 4(4), 501. doi:10.1364/ao.4.000501Vogt, H. (1968). Visibility Measurement Using Backscattered Light. Journal of the Atmospheric Sciences, 25(5), 912-918. doi:10.1175/1520-0469(1968)0252.0.co;2Tjugum, S. A., Vaagen, J. S., Jakobsen, T., & Hamre, B. (2005). Use of optical scatter sensors for measurement of visibility. Journal of Environmental Monitoring, 7(6), 608. doi:10.1039/b414327bNebuloni, R. (2005). Empirical relationships between extinction coefficient and visibility in fog. Applied Optics, 44(18), 3795. doi:10.1364/ao.44.003795Kirianaki, N. V., Yurish, S. Y., Shpak, N. O., & Deynega, V. P. (2002). Data Acquisition and Signal Processing for Smart Sensors. doi:10.1002/0470846100Hlupic, N., Butorac, J., & Kresic, M. (2005). Improved Frequency Measurement by Means of DMM and Verification of its Specifications. IEEE Transactions on Instrumentation and Measurement, 54(5), 1957-1963. doi:10.1109/tim.2005.853561Prokin, M. (1991). Double buffered wide-range frequency measurement method for digital tachometers. IEEE Transactions on Instrumentation and Measurement, 40(3), 606-610. doi:10.1109/19.87027Yurish, S. Y., Reverter, F., & Pallàs-Areny, R. (2005). Measurement error analysis and uncertainty reduction for period- and time-interval-to-digital converters based on microcontrollers. Measurement Science and Technology, 16(8), 1660-1666. doi:10.1088/0957-0233/16/8/018Kirianaki, N. V., Yurish, S. Y., & Shpak, N. O. (2001). Methods of dependent count for frequency measurements. Measurement, 29(1), 31-50. doi:10.1016/s0263-2241(00)00026-9Barrales-Guadarrama , R. ; Mocholí-Salcedo , A. ; Vázquez-Cerón , E. R. ; Rodríguez-Rodríguez , M. E. ; Barrales-Guadarrama , V. R. A Technique for Adapting a Quasi-digital Photodetector to a Frequency-to-digital Converter. Proceedings 2012 IEEE Electronics, Robotics and Automotive Mechanics Conference, CERMA 2012, Cuernavaca, Morelos, México, Nov. 20–23, 2012.(2011) 700–999 nm Bandpass Interference Filters, [Online]. Available: http://www.edmundoptics.com/products/displayproduct.cfm?productid=3198&PageNum=6&Sort=displayOrder&Order=asc#products.AeroGrapher's Mate, Module 05—Basic Meteorology, Ch. 5, Atmospheric Phenomena, Radiation Fog, [Online]. Available: http://www.tpub.com/content/aerographer/14312/css/14312_143.htm
    corecore