6,777 research outputs found

    On Compact Routing for the Internet

    Full text link
    While there exist compact routing schemes designed for grids, trees, and Internet-like topologies that offer routing tables of sizes that scale logarithmically with the network size, we demonstrate in this paper that in view of recent results in compact routing research, such logarithmic scaling on Internet-like topologies is fundamentally impossible in the presence of topology dynamics or topology-independent (flat) addressing. We use analytic arguments to show that the number of routing control messages per topology change cannot scale better than linearly on Internet-like topologies. We also employ simulations to confirm that logarithmic routing table size scaling gets broken by topology-independent addressing, a cornerstone of popular locator-identifier split proposals aiming at improving routing scaling in the presence of network topology dynamics or host mobility. These pessimistic findings lead us to the conclusion that a fundamental re-examination of assumptions behind routing models and abstractions is needed in order to find a routing architecture that would be able to scale ``indefinitely.''Comment: This is a significantly revised, journal version of cs/050802

    Labeling Schemes with Queries

    Full text link
    We study the question of ``how robust are the known lower bounds of labeling schemes when one increases the number of consulted labels''. Let ff be a function on pairs of vertices. An ff-labeling scheme for a family of graphs \cF labels the vertices of all graphs in \cF such that for every graph G\in\cF and every two vertices u,vGu,v\in G, the value f(u,v)f(u,v) can be inferred by merely inspecting the labels of uu and vv. This paper introduces a natural generalization: the notion of ff-labeling schemes with queries, in which the value f(u,v)f(u,v) can be inferred by inspecting not only the labels of uu and vv but possibly the labels of some additional vertices. We show that inspecting the label of a single additional vertex (one {\em query}) enables us to reduce the label size of many labeling schemes significantly

    Distance labeling schemes for trees

    Get PDF
    We consider distance labeling schemes for trees: given a tree with nn nodes, label the nodes with binary strings such that, given the labels of any two nodes, one can determine, by looking only at the labels, the distance in the tree between the two nodes. A lower bound by Gavoille et. al. (J. Alg. 2004) and an upper bound by Peleg (J. Graph Theory 2000) establish that labels must use Θ(log2n)\Theta(\log^2 n) bits\footnote{Throughout this paper we use log\log for log2\log_2.}. Gavoille et. al. (ESA 2001) show that for very small approximate stretch, labels use Θ(lognloglogn)\Theta(\log n \log \log n) bits. Several other papers investigate various variants such as, for example, small distances in trees (Alstrup et. al., SODA'03). We improve the known upper and lower bounds of exact distance labeling by showing that 14log2n\frac{1}{4} \log^2 n bits are needed and that 12log2n\frac{1}{2} \log^2 n bits are sufficient. We also give (1+ϵ1+\epsilon)-stretch labeling schemes using Θ(logn)\Theta(\log n) bits for constant ϵ>0\epsilon>0. (1+ϵ1+\epsilon)-stretch labeling schemes with polylogarithmic label size have previously been established for doubling dimension graphs by Talwar (STOC 2004). In addition, we present matching upper and lower bounds for distance labeling for caterpillars, showing that labels must have size 2lognΘ(loglogn)2\log n - \Theta(\log\log n). For simple paths with kk nodes and edge weights in [1,n][1,n], we show that labels must have size k1klogn+Θ(logk)\frac{k-1}{k}\log n+\Theta(\log k)

    Compact Oblivious Routing

    Get PDF
    Oblivious routing is an attractive paradigm for large distributed systems in which centralized control and frequent reconfigurations are infeasible or undesired (e.g., costly). Over the last almost 20 years, much progress has been made in devising oblivious routing schemes that guarantee close to optimal load and also algorithms for constructing such schemes efficiently have been designed. However, a common drawback of existing oblivious routing schemes is that they are not compact: they require large routing tables (of polynomial size), which does not scale. This paper presents the first oblivious routing scheme which guarantees close to optimal load and is compact at the same time - requiring routing tables of polylogarithmic size. Our algorithm maintains the polylogarithmic competitive ratio of existing algorithms, and is hence particularly well-suited for emerging large-scale networks

    Dynamic and Multi-functional Labeling Schemes

    Full text link
    We investigate labeling schemes supporting adjacency, ancestry, sibling, and connectivity queries in forests. In the course of more than 20 years, the existence of logn+O(loglog)\log n + O(\log \log) labeling schemes supporting each of these functions was proven, with the most recent being ancestry [Fraigniaud and Korman, STOC '10]. Several multi-functional labeling schemes also enjoy lower or upper bounds of logn+Ω(loglogn)\log n + \Omega(\log \log n) or logn+O(loglogn)\log n + O(\log \log n) respectively. Notably an upper bound of logn+5loglogn\log n + 5\log \log n for adjacency+siblings and a lower bound of logn+loglogn\log n + \log \log n for each of the functions siblings, ancestry, and connectivity [Alstrup et al., SODA '03]. We improve the constants hidden in the OO-notation. In particular we show a logn+2loglogn\log n + 2\log \log n lower bound for connectivity+ancestry and connectivity+siblings, as well as an upper bound of logn+3loglogn+O(logloglogn)\log n + 3\log \log n + O(\log \log \log n) for connectivity+adjacency+siblings by altering existing methods. In the context of dynamic labeling schemes it is known that ancestry requires Ω(n)\Omega(n) bits [Cohen, et al. PODS '02]. In contrast, we show upper and lower bounds on the label size for adjacency, siblings, and connectivity of 2logn2\log n bits, and 3logn3 \log n to support all three functions. There exist efficient adjacency labeling schemes for planar, bounded treewidth, bounded arboricity and interval graphs. In a dynamic setting, we show a lower bound of Ω(n)\Omega(n) for each of those families.Comment: 17 pages, 5 figure

    Scalable Routing Easy as PIE: a Practical Isometric Embedding Protocol (Technical Report)

    Get PDF
    We present PIE, a scalable routing scheme that achieves 100% packet delivery and low path stretch. It is easy to implement in a distributed fashion and works well when costs are associated to links. Scalability is achieved by using virtual coordinates in a space of concise dimensionality, which enables greedy routing based only on local knowledge. PIE is a general routing scheme, meaning that it works on any graph. We focus however on the Internet, where routing scalability is an urgent concern. We show analytically and by using simulation that the scheme scales extremely well on Internet-like graphs. In addition, its geometric nature allows it to react efficiently to topological changes or failures by finding new paths in the network at no cost, yielding better delivery ratios than standard algorithms. The proposed routing scheme needs an amount of memory polylogarithmic in the size of the network and requires only local communication between the nodes. Although each node constructs its coordinates and routes packets locally, the path stretch remains extremely low, even lower than for centralized or less scalable state-of-the-art algorithms: PIE always finds short paths and often enough finds the shortest paths.Comment: This work has been previously published in IEEE ICNP'11. The present document contains an additional optional mechanism, presented in Section III-D, to further improve performance by using route asymmetry. It also contains new simulation result

    On Efficient Distributed Construction of Near Optimal Routing Schemes

    Full text link
    Given a distributed network represented by a weighted undirected graph G=(V,E)G=(V,E) on nn vertices, and a parameter kk, we devise a distributed algorithm that computes a routing scheme in (n1/2+1/k+D)no(1)(n^{1/2+1/k}+D)\cdot n^{o(1)} rounds, where DD is the hop-diameter of the network. The running time matches the lower bound of Ω~(n1/2+D)\tilde{\Omega}(n^{1/2}+D) rounds (which holds for any scheme with polynomial stretch), up to lower order terms. The routing tables are of size O~(n1/k)\tilde{O}(n^{1/k}), the labels are of size O(klog2n)O(k\log^2n), and every packet is routed on a path suffering stretch at most 4k5+o(1)4k-5+o(1). Our construction nearly matches the state-of-the-art for routing schemes built in a centralized sequential manner. The previous best algorithms for building routing tables in a distributed small messages model were by \cite[STOC 2013]{LP13} and \cite[PODC 2015]{LP15}. The former has similar properties but suffers from substantially larger routing tables of size O(n1/2+1/k)O(n^{1/2+1/k}), while the latter has sub-optimal running time of O~(min{(nD)1/2n1/k,n2/3+2/(3k)+D})\tilde{O}(\min\{(nD)^{1/2}\cdot n^{1/k},n^{2/3+2/(3k)}+D\})

    Near-optimal labeling schemes for nearest common ancestors

    Full text link
    We consider NCA labeling schemes: given a rooted tree TT, label the nodes of TT with binary strings such that, given the labels of any two nodes, one can determine, by looking only at the labels, the label of their nearest common ancestor. For trees with nn nodes we present upper and lower bounds establishing that labels of size (2±ϵ)logn(2\pm \epsilon)\log n, ϵ<1\epsilon<1 are both sufficient and necessary. (All logarithms in this paper are in base 2.) Alstrup, Bille, and Rauhe (SIDMA'05) showed that ancestor and NCA labeling schemes have labels of size logn+Ω(loglogn)\log n +\Omega(\log \log n). Our lower bound increases this to logn+Ω(logn)\log n + \Omega(\log n) for NCA labeling schemes. Since Fraigniaud and Korman (STOC'10) established that labels in ancestor labeling schemes have size logn+Θ(loglogn)\log n +\Theta(\log \log n), our new lower bound separates ancestor and NCA labeling schemes. Our upper bound improves the 10logn10 \log n upper bound by Alstrup, Gavoille, Kaplan and Rauhe (TOCS'04), and our theoretical result even outperforms some recent experimental studies by Fischer (ESA'09) where variants of the same NCA labeling scheme are shown to all have labels of size approximately 8logn8 \log n
    corecore