28,909 research outputs found

    Reconfigurable nanoelectronics using graphene based spintronic logic gates

    Full text link
    This paper presents a novel design concept for spintronic nanoelectronics that emphasizes a seamless integration of spin-based memory and logic circuits. The building blocks are magneto-logic gates based on a hybrid graphene/ferromagnet material system. We use network search engines as a technology demonstration vehicle and present a spin-based circuit design with smaller area, faster speed, and lower energy consumption than the state-of-the-art CMOS counterparts. This design can also be applied in applications such as data compression, coding and image recognition. In the proposed scheme, over 100 spin-based logic operations are carried out before any need for a spin-charge conversion. Consequently, supporting CMOS electronics requires little power consumption. The spintronic-CMOS integrated system can be implemented on a single 3-D chip. These nonvolatile logic circuits hold potential for a paradigm shift in computing applications.Comment: 14 pages (single column), 6 figure

    Spin-Based Neuron Model with Domain Wall Magnets as Synapse

    Full text link
    We present artificial neural network design using spin devices that achieves ultra low voltage operation, low power consumption, high speed, and high integration density. We employ spin torque switched nano-magnets for modelling neuron and domain wall magnets for compact, programmable synapses. The spin based neuron-synapse units operate locally at ultra low supply voltage of 30mV resulting in low computation power. CMOS based inter-neuron communication is employed to realize network-level functionality. We corroborate circuit operation with physics based models developed for the spin devices. Simulation results for character recognition as a benchmark application shows 95% lower power consumption as compared to 45nm CMOS design
    • …
    corecore