30,578 research outputs found

    Improving variational methods via pairwise linear response identities

    Get PDF
    nference methods are often formulated as variational approximations: these approxima-tions allow easy evaluation of statistics by marginalization or linear response, but theseestimates can be inconsistent. We show that by introducing constraints on covariance, onecan ensure consistency of linear response with the variational parameters, and in so doinginference of marginal probability distributions is improved. For the Bethe approximationand its generalizations, improvements are achieved with simple choices of the constraints.The approximations are presented as variational frameworks; iterative procedures relatedto message passing are provided for finding the minim

    Quantitative Approximation of the Probability Distribution of a Markov Process by Formal Abstractions

    Full text link
    The goal of this work is to formally abstract a Markov process evolving in discrete time over a general state space as a finite-state Markov chain, with the objective of precisely approximating its state probability distribution in time, which allows for its approximate, faster computation by that of the Markov chain. The approach is based on formal abstractions and employs an arbitrary finite partition of the state space of the Markov process, and the computation of average transition probabilities between partition sets. The abstraction technique is formal, in that it comes with guarantees on the introduced approximation that depend on the diameters of the partitions: as such, they can be tuned at will. Further in the case of Markov processes with unbounded state spaces, a procedure for precisely truncating the state space within a compact set is provided, together with an error bound that depends on the asymptotic properties of the transition kernel of the original process. The overall abstraction algorithm, which practically hinges on piecewise constant approximations of the density functions of the Markov process, is extended to higher-order function approximations: these can lead to improved error bounds and associated lower computational requirements. The approach is practically tested to compute probabilistic invariance of the Markov process under study, and is compared to a known alternative approach from the literature.Comment: 29 pages, Journal of Logical Methods in Computer Scienc

    Algorithms for Kullback-Leibler Approximation of Probability Measures in Infinite Dimensions

    Get PDF
    In this paper we study algorithms to find a Gaussian approximation to a target measure defined on a Hilbert space of functions; the target measure itself is defined via its density with respect to a reference Gaussian measure. We employ the Kullback-Leibler divergence as a distance and find the best Gaussian approximation by minimizing this distance. It then follows that the approximate Gaussian must be equivalent to the Gaussian reference measure, defining a natural function space setting for the underlying calculus of variations problem. We introduce a computational algorithm which is well-adapted to the required minimization, seeking to find the mean as a function, and parameterizing the covariance in two different ways: through low rank perturbations of the reference covariance; and through Schr\"odinger potential perturbations of the inverse reference covariance. Two applications are shown: to a nonlinear inverse problem in elliptic PDEs, and to a conditioned diffusion process. We also show how the Gaussian approximations we obtain may be used to produce improved pCN-MCMC methods which are not only well-adapted to the high-dimensional setting, but also behave well with respect to small observational noise (resp. small temperatures) in the inverse problem (resp. conditioned diffusion).Comment: 28 page

    Calculation of aggregate loss distributions

    Full text link
    Estimation of the operational risk capital under the Loss Distribution Approach requires evaluation of aggregate (compound) loss distributions which is one of the classic problems in risk theory. Closed-form solutions are not available for the distributions typically used in operational risk. However with modern computer processing power, these distributions can be calculated virtually exactly using numerical methods. This paper reviews numerical algorithms that can be successfully used to calculate the aggregate loss distributions. In particular Monte Carlo, Panjer recursion and Fourier transformation methods are presented and compared. Also, several closed-form approximations based on moment matching and asymptotic result for heavy-tailed distributions are reviewed

    Weighted Polynomial Approximations: Limits for Learning and Pseudorandomness

    Get PDF
    Polynomial approximations to boolean functions have led to many positive results in computer science. In particular, polynomial approximations to the sign function underly algorithms for agnostically learning halfspaces, as well as pseudorandom generators for halfspaces. In this work, we investigate the limits of these techniques by proving inapproximability results for the sign function. Firstly, the polynomial regression algorithm of Kalai et al. (SIAM J. Comput. 2008) shows that halfspaces can be learned with respect to log-concave distributions on Rn\mathbb{R}^n in the challenging agnostic learning model. The power of this algorithm relies on the fact that under log-concave distributions, halfspaces can be approximated arbitrarily well by low-degree polynomials. We ask whether this technique can be extended beyond log-concave distributions, and establish a negative result. We show that polynomials of any degree cannot approximate the sign function to within arbitrarily low error for a large class of non-log-concave distributions on the real line, including those with densities proportional to exp(x0.99)\exp(-|x|^{0.99}). Secondly, we investigate the derandomization of Chernoff-type concentration inequalities. Chernoff-type tail bounds on sums of independent random variables have pervasive applications in theoretical computer science. Schmidt et al. (SIAM J. Discrete Math. 1995) showed that these inequalities can be established for sums of random variables with only O(log(1/δ))O(\log(1/\delta))-wise independence, for a tail probability of δ\delta. We show that their results are tight up to constant factors. These results rely on techniques from weighted approximation theory, which studies how well functions on the real line can be approximated by polynomials under various distributions. We believe that these techniques will have further applications in other areas of computer science.Comment: 22 page
    corecore