2,071 research outputs found

    Percolation in the Secrecy Graph

    Get PDF
    The secrecy graph is a random geometric graph which is intended to model the connectivity of wireless networks under secrecy constraints. Directed edges in the graph are present whenever a node can talk to another node securely in the presence of eavesdroppers, which, in the model, is determined solely by the locations of the nodes and eavesdroppers. In the case of infinite networks, a critical parameter is the maximum density of eavesdroppers that can be accommodated while still guaranteeing an infinite component in the network, i.e., the percolation threshold. We focus on the case where the locations of the nodes and eavesdroppers are given by Poisson point processes, and present bounds for different types of percolation, including in-, out- and undirected percolation.Comment: 22 pages, 3 figure

    A sharper threshold for bootstrap percolation in two dimensions

    Get PDF
    Two-dimensional bootstrap percolation is a cellular automaton in which sites become 'infected' by contact with two or more already infected nearest neighbors. We consider these dynamics, which can be interpreted as a monotone version of the Ising model, on an n x n square, with sites initially infected independently with probability p. The critical probability p_c is the smallest p for which the probability that the entire square is eventually infected exceeds 1/2. Holroyd determined the sharp first-order approximation: p_c \sim \pi^2/(18 log n) as n \to \infty. Here we sharpen this result, proving that the second term in the expansion is -(log n)^{-3/2+ o(1)}, and moreover determining it up to a poly(log log n)-factor. The exponent -3/2 corrects numerical predictions from the physics literature.Comment: 21 page

    Scaling and Inverse Scaling in Anisotropic Bootstrap percolation

    Full text link
    In bootstrap percolation it is known that the critical percolation threshold tends to converge slowly to zero with increasing system size, or, inversely, the critical size diverges fast when the percolation probability goes to zero. To obtain higher-order terms (that is, sharp and sharper thresholds) for the percolation threshold in general is a hard question. In the case of two-dimensional anisotropic models, sometimes correction terms can be obtained from inversion in a relatively simple manner.Comment: Contribution to the proceedings of the 2013 EURANDOM workshop Probabilistic Cellular Automata: Theory, Applications and Future Perspectives, equation typo corrected, constant of generalisation correcte
    • …
    corecore