607 research outputs found

    Privacy-Aware Processing of Biometric Templates by Means of Secure Two-Party Computation

    Get PDF
    The use of biometric data for person identification and access control is gaining more and more popularity. Handling biometric data, however, requires particular care, since biometric data is indissolubly tied to the identity of the owner hence raising important security and privacy issues. This chapter focuses on the latter, presenting an innovative approach that, by relying on tools borrowed from Secure Two Party Computation (STPC) theory, permits to process the biometric data in encrypted form, thus eliminating any risk that private biometric information is leaked during an identification process. The basic concepts behind STPC are reviewed together with the basic cryptographic primitives needed to achieve privacy-aware processing of biometric data in a STPC context. The two main approaches proposed so far, namely homomorphic encryption and garbled circuits, are discussed and the way such techniques can be used to develop a full biometric matching protocol described. Some general guidelines to be used in the design of a privacy-aware biometric system are given, so as to allow the reader to choose the most appropriate tools depending on the application at hand

    On the Complexity of Decomposable Randomized Encodings, Or: How Friendly Can a Garbling-Friendly PRF Be?

    Get PDF

    Communication Complexity and Secure Function Evaluation

    Full text link
    We suggest two new methodologies for the design of efficient secure protocols, that differ with respect to their underlying computational models. In one methodology we utilize the communication complexity tree (or branching for f and transform it into a secure protocol. In other words, "any function f that can be computed using communication complexity c can be can be computed securely using communication complexity that is polynomial in c and a security parameter". The second methodology uses the circuit computing f, enhanced with look-up tables as its underlying computational model. It is possible to simulate any RAM machine in this model with polylogarithmic blowup. Hence it is possible to start with a computation of f on a RAM machine and transform it into a secure protocol. We show many applications of these new methodologies resulting in protocols efficient either in communication or in computation. In particular, we exemplify a protocol for the "millionaires problem", where two participants want to compare their values but reveal no other information. Our protocol is more efficient than previously known ones in either communication or computation

    ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks

    Get PDF
    The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation. In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices

    ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks

    Get PDF
    The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation. In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices

    Privacy-Preserving Shortest Path Computation

    Full text link
    Navigation is one of the most popular cloud computing services. But in virtually all cloud-based navigation systems, the client must reveal her location and destination to the cloud service provider in order to learn the fastest route. In this work, we present a cryptographic protocol for navigation on city streets that provides privacy for both the client's location and the service provider's routing data. Our key ingredient is a novel method for compressing the next-hop routing matrices in networks such as city street maps. Applying our compression method to the map of Los Angeles, for example, we achieve over tenfold reduction in the representation size. In conjunction with other cryptographic techniques, this compressed representation results in an efficient protocol suitable for fully-private real-time navigation on city streets. We demonstrate the practicality of our protocol by benchmarking it on real street map data for major cities such as San Francisco and Washington, D.C.Comment: Extended version of NDSS 2016 pape

    Gazelle: A Low Latency Framework for Secure Neural Network Inference

    Full text link
    The growing popularity of cloud-based machine learning raises a natural question about the privacy guarantees that can be provided in such a setting. Our work tackles this problem in the context where a client wishes to classify private images using a convolutional neural network (CNN) trained by a server. Our goal is to build efficient protocols whereby the client can acquire the classification result without revealing their input to the server, while guaranteeing the privacy of the server's neural network. To this end, we design Gazelle, a scalable and low-latency system for secure neural network inference, using an intricate combination of homomorphic encryption and traditional two-party computation techniques (such as garbled circuits). Gazelle makes three contributions. First, we design the Gazelle homomorphic encryption library which provides fast algorithms for basic homomorphic operations such as SIMD (single instruction multiple data) addition, SIMD multiplication and ciphertext permutation. Second, we implement the Gazelle homomorphic linear algebra kernels which map neural network layers to optimized homomorphic matrix-vector multiplication and convolution routines. Third, we design optimized encryption switching protocols which seamlessly convert between homomorphic and garbled circuit encodings to enable implementation of complete neural network inference. We evaluate our protocols on benchmark neural networks trained on the MNIST and CIFAR-10 datasets and show that Gazelle outperforms the best existing systems such as MiniONN (ACM CCS 2017) by 20 times and Chameleon (Crypto Eprint 2017/1164) by 30 times in online runtime. Similarly when compared with fully homomorphic approaches like CryptoNets (ICML 2016) we demonstrate three orders of magnitude faster online run-time

    Garbling Schemes and Applications

    Get PDF
    The topic of this thesis is garbling schemes and their applications. A garbling scheme is a set of algorithms for realizing secure two-party computation. A party called a client possesses a private algorithm as well as a private input and would like to compute the algorithm with this input. However, the client might not have enough computational resources to evaluate the function with the input on his own. The client outsources the computation to another party, called an evaluator. Since the client wants to protect the algorithm and the input, he cannot just send the algorithm and the input to the evaluator. With a garbling scheme, the client can protect the privacy of the algorithm, the input and possibly also the privacy of the output. The increase in network-based applications has arisen concerns about the privacy of user data. Therefore, privacy-preserving or privacy-enhancing techniques have gained interest in recent research. Garbling schemes seem to be an ideal solution for privacy-preserving applications. First of all, secure garbling schemes hide the algorithm and its input. Secondly, garbling schemes are known to have efficient implementations. In this thesis, we propose two applications utilizing garbling schemes. The first application provides privacy-preserving electronic surveillance. The second application extends electronic surveillance to more versatile monitoring, including also health telemetry. This kind of application would be ideal for assisted living services. In this work, we also present theoretical results related to garbling schemes. We present several new security definitions for garbling schemes which are of practical use. Traditionally, the same garbled algorithm can be evaluated once with garbled input. In applications, the same function is often evaluated several times with different inputs. Recently, a solution based on fully homomorphic encryption provides arbitrarily reusable garbling schemes. The disadvantage in this approach is that the arbitrary reuse cannot be efficiently implemented due to the inefficiency of fully homomorphic encryption. We propose an alternative approach. Instead of arbitrary reusability, the same garbled algorithm could be used a limited number of times. This gives us a set of new security classes for garbling schemes. We prove several relations between new and established security definitions. As a result, we obtain a complex hierarchy which can be represented as a product of three directed graphs. The three graphs in turn represent the different flavors of security: the security notion, the security model and the level of reusability. In addition to defining new security classes, we improve the definition of side-information function, which has a central role in defining the security of a garbling scheme. The information allowed to be leaked by the garbled algorithm and the garbled input depend on the representation of the algorithm. The established definition of side-information models the side-information of circuits perfectly but does not model side-information of Turing machines as well. The established model requires that the length of the argument, the length of the final result and the length of the function can be efficiently computable from the side-information function. Moreover, the side-information depends only on the function. In other words, the length of the argument, the length of the final result and the length of the function should only depend on the function. For circuits this is a natural requirement since the number of input wires tells the size of the argument, the number of output wires tells the size of the final result and the number of gates and wires tell the size of the function. On the other hand, the description of a Turing machine does not set any limitation to the size of the argument. Therefore, side-information that depends only on the function cannot provide information about the length of the argument. To tackle this problem, we extend the model of side-information so that side-information depends on both the function and the argument. The new model of side information allows us to define new security classes. We show that the old security classes are compatible with the new model of side-information. We also prove relations between the new security classes.Tämä väitöskirja käsittelee garblausskeemoja ja niiden sovelluksia. Garblausskeema on työkalu, jota käytetään turvallisen kahden osapuolen laskennan toteuttamiseen. Asiakas pitää hallussaan yksityistä algoritmia ja sen yksityistä syötettä, joilla hän haluaisi suorittaa tietyn laskennan. Asiakkaalla ei välttämättä ole riittävästi laskentatehoa, minkä vuoksi hän ei pysty suorittamaan laskentaa itse, vaan joutuu ulkoistamaan laskennan toiselle osapuolelle, palvelimelle. Koska asiakas tahtoo suojella algoritmiaan ja syötettään, hän ei voi vain lähettää niitä palvelimen laskettavaksi. Asiakas pystyy suojelemaan syötteensä ja algoritminsa yksityisyyttä käyttämällä garblausskeemaa. Verkkopohjaisten sovellusten kasvu on herättänyt huolta käyttäjien datan yksityisyyden turvasta. Siksi yksityisyyden säilyttävien tai yksityisyyden suojaa lisäävien tekniikoiden tutkimus on saanut huomiota. Garblaustekniikan avulla voidaan suojata sekä syöte että algoritmi. Lisäksi garblaukselle tiedetään olevan useita tehokkaita toteutuksia. Näiden syiden vuoksi garblausskeemat ovat houkutteleva tekniikka käytettäväksi yksityisyyden säilyttävien sovellusten toteutuksessa. Tässä työssä esittelemme kaksi sovellusta, jotka hyödyntävät garblaustekniikkaa. Näistä ensimmäinen on yksityisyyden säilyttävä sähköinen seuranta. Toinen sovellus laajentaa seurantaa monipuolisempaan monitorointiin, kuten terveyden kaukoseurantaan. Tästä voi olla hyötyä etenkin kotihoidon palveluille. Tässä työssä esitämme myös teoreettisia tuloksia garblausskeemoihin liittyen. Esitämme garblausskeemoille uusia turvallisuusmääritelmiä, joiden tarve kumpuaa käytännön sovelluksista. Perinteisen määritelmän mukaan samaa garblattua algoritmia voi käyttää vain yhdellä garblatulla syötteellä laskemiseen. Käytännössä kuitenkin samaa algoritmia käytetään usean eri syötteen evaluoimiseen. Hiljattain on esitetty tähän ongelmaan ratkaisu, joka perustuu täysin homomorfiseen salaukseen. Tämän ratkaisun ansiosta samaa garblattua algoritmia voi turvallisesti käyttää mielivaltaisen monta kertaa. Ratkaisun haittapuoli kuitenkin on, ettei sille ole tiedossa tehokasta toteutusta, sillä täysin homomorfiseen salaukseen ei ole vielä onnistuttu löytämään sellaista. Esitämme vaihtoehtoisen näkökulman: sen sijaan, että samaa garblattua algoritmia voisi käyttää mielivaltaisen monta kertaa, sitä voikin käyttää vain tietyn, ennalta rajatun määrän kertoja. Tämä näkökulman avulla voidaan määritellä lukuisia uusia turvallisuusluokkia. Todistamme useita relaatioita uusien ja vanhojen turvallisuusmääritelmien välillä. Relaatioiden avulla garblausskeemojen turvallisuusluokille saadaan muodostettua hierarkia, joka koostuu kolmesta komponentista. Tieto, joka paljastuu garblatusta algoritmista tai garblatusta syötteestä riippuu siitä, millaisessa muodossa algoritmi on esitetty, kutsutaan sivutiedoksi. Vakiintunut määritelmä mallintaa loogisen piiriin liittyvää sivutietoa täydellisesti, mutta ei yhtä hyvin Turingin koneeseen liittyvää sivutietoa. Tämä johtuu siitä, että jokainen yksittäinen looginen piiri asettaa syötteensä pituudelle rajan, mutta yksittäisellä Turingin koneella vastaavanlaista rajoitusta ei ole. Parannamme sivutiedon määritelmää, jolloin tämä ongelma poistuu. Uudenlaisen sivutiedon avulla voidaan määritellä uusia turvallisuusluokkia. Osoitamme, että vanhat turvallisuusluokat voidaan esittää uudenkin sivutiedon avulla. Todistamme myös relaatioita uusien luokkien välillä.Siirretty Doriast

    Gazelle: A Low Latency Framework for Secure Neural Network Inference

    Get PDF
    The growing popularity of cloud-based machine learning raises a natural question about the privacy guarantees that can be provided in such a setting. Our work tackles this problem in the context where a client wishes to classify private images using a convolutional neural network (CNN) trained by a server. Our goal is to build efficient protocols whereby the client can acquire the classification result without revealing their input to the server, while guaranteeing the privacy of the server's neural network. To this end, we design Gazelle, a scalable and low-latency system for secure neural network inference, using an intricate combination of homomorphic encryption and traditional two-party computation techniques (such as garbled circuits). Gazelle makes three contributions. First, we design the Gazelle homomorphic encryption library which provides fast algorithms for basic homomorphic operations such as SIMD (single instruction multiple data) addition, SIMD multiplication and ciphertext permutation. Second, we implement the Gazelle homomorphic linear algebra kernels which map neural network layers to optimized homomorphic matrix-vector multiplication and convolution routines. Third, we design optimized encryption switching protocols which seamlessly convert between homomorphic and garbled circuit encodings to enable implementation of complete neural network inference. We evaluate our protocols on benchmark neural networks trained on the MNIST and CIFAR-10 datasets and show that Gazelle outperforms the best existing systems such as MiniONN (ACM CCS 2017) by 20 times and Chameleon (Crypto Eprint 2017/1164) by 30 times in online runtime. Similarly when compared with fully homomorphic approaches like CryptoNets (ICML 2016) we demonstrate three orders of magnitude faster online run-time
    corecore