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Chapter 1: Introduction

With the rise of big data and machine learning, computing on joint databases

begins to play a central role in both the scientific and business environments. Along

with these developments, the privacy and security concerns have become pervasive.

For example, how can we enable two untrusted parties to jointly evaluate a function

over their private inputs without revealing their data? How can we ensure that

computations are not compromised, passwords are not broken, and your encrypted

data is not eavesdropped?

My research focuses on solving the above problems by designing cryptographic

protocols and systems that can be evaluated in terms of security assumptions,

computational running time, and required number of bits of communication. The

main objectives of my research are to minimize the necessary assumptions and to

devise more efficient solutions.

To this end, I have proposed several protocols for private matching and private

set intersection/union, which allow many parties, each holding a set of items, to

learn their common/different items without revealing anything else about their

sets. Indeed, these problems are special cases of secure computation, which allows

many parties jointly compute a function on their private inputs in a way that no

party learns anything other than the output itself. This thesis summarizes my

research so far, which has made significant contributions to the field of secure
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computation in general and private matching in particular.

1.1 Problem Statement

Private Matching (PM) is a 2-party protocol in which a receiver who has an input

string x0 interacts with a sender holding an input string x1. The result is that

the receiver learns an output of bit/function depending on whether x0 and x1 are

matched according to a defined measurement and nothing else, whereas the sender

learns nothing. The defined measurement can be hamming distance, edit distance,

Euclidean distance. Instead of the single input string, each party can have a set

of items. In addition, when we define that x0 and x1 are matched if they are

strictly equal, PM can be extended to a private set operation where parties want

to learn only the intersection (so-called PSI) or union (so-called PSU) of two sets.

Moreover, revealing the intersection/union sets to the party might be violation

of the privacy objective in some cases and it would be more appropriate to only

output a function on the set of common/different items. For example, parties

would like to compute the cardinality of the intersection, or some aggregation

(e.g., sum, average) of items in the intersection without revealing any additional

information, including the intersections set.

Secure multi-party computation enables distrustful users to jointly evaluate

any function on their private inputs without requiring a trusted third party and

without revealing anything except the result itself. However, generic cryptographic

and secure computation tools may not be suitable and efficient to tackle some
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variants of PM since every problem may have distinct features and come with

specific requirements. Thus, it is highly desirable to seek new theoretical and

technical refinements to improve their performance, as well as propose concrete

optimizations tailored for the real-world and important applications of PM.

1.2 Applications

To motivate my research, I first present some relevant and promising application

scenarios of PM and explain why a privacy-preserving solution is desirable in these

settings. Indeed, PM can be applied in various contexts, such as: (1) Private

Database Queries where a client wants to retrieve some records based on her/his

keyword search (e.g., contact discovery for mobile services in which the client

learns the intersection of its own contact list and a server’s user database); (2)

Voter Registration where two states would like to identify people registered to

vote in both states; and (3) Threat Log Comparison which attempts to identify

common attacks across several networks. These applications exemplify the wide

variety of research interests and practical areas where private matching can be a

cryptographic primitive tool for secure computation.

The most common solution to the above applications is to utilize a trusted

third-party (organization) to whom users could send their data. The trusted third-

party would then compute the desired functions (e.g., matching) and send the final

results to the users. For instance, consider an example related to DNA analysis,

where a researcher holds a specific cancer marker sequence with some errors and
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wants to discover the frequency and positions of the gene occurrences in a patient

genomic database possessed by a hospital. Since genomic data is highly sensitive

in nature, the hospital is required keep the database private, while the researcher

needs to protect the specific genome sequence that he is working on. To tackle this

problem, both the researcher and the hospital send their data to a trusted cloud

service provider (e.g., AWS) for further computation, and obtain the output from

the service. As a result, the service provider has access to a large amount of highly

sensitive information that is supposed to be kept strictly private.

1.3 Contributions

This dissertation makes significant improvements to the state-of-the-art PM

literature. In particular, Chapter 3 and 4 present three of my fastest PSI

protocols [KKRT16, PRTY19, KMP+17]. In Chapter 5, I describe my PSU

scheme [KRTW19] which shows 7, 600× faster than the state-of-the-art work. The

richer problem of PM, which is secure pattern matching [KRT18], is shown in the

last chapter.

I have also summarized my recent PSI works [PRTY20, RT20, DRRT18] in this

section. However, due to the space limitation, this dissertation will not discuss

them in details.
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1.3.1 Two-Party PM/PSI.

One of my first works [KKRT16] significantly improves the state-of-the-art PSI

protocol of [PSSZ15] by replacing one of its key components with a new cryp-

tographic primitive “batched, related-key Oblivious Pseudorandom Function”

(BaRK-OPRF). Indeed, many recent works have employed our new primitive as

a building block for their applications. We implemented our BaRK-OPRF-based

PSI protocol and found ours to be 2.3−3.6× faster than the protocol in [PSSZ15].

In particular, our protocol requires only 3.8 seconds to securely compute the inter-

section of 220-size sets. Moreover, our protocol is only 4.3× slower than a plaintext

intersection with no security.

Later, I introduced a new PSI technique [PRTY19, RT20] that has the lowest

communication complexity to date. The technical core of the approach [PRTY19]

is a new cryptographic tool (called sparse OT extension). Conceptually, it can be

thought of as a communication-efficient OPRF evaluation. Compared to my first

work [KKRT16], this new scheme requires 1.8− 2.1× less communication.

Very recently, I proposed a new oblivious data structure as a key-value store

which called a probe-and-XOR of strings (PaXoS), and use it as the building block

for our efficient PSI protocol [PRTY20] against malicious adversary who o may

arbitrarily deviate from the protocol. Our new PSI protocol achieves the first

linear-communication protocol in malicious setting.
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1.3.2 Multi-party PM/PSI.

We extended the traditional two-party protocol setting to a multi-party scenario

that enables more than two parties to compute the private intersection/matching of

their datasets. Our protocols [KMP+17] avoid computationally expensive public-

key operations and are secure in the presence of any subset of semi-honest partici-

pants who assumed to follow the protocol, but attempts to obtain extra information

from the execution transcript.

Noticeably, to the best of our knowledge, ours is the first protocol that has

implementation (the code is publicly available), and we also provide experimental

results. For 5 parties with data-sets of 220 items each, our protocol requires only 72

seconds. Our novel underlying technique is oblivious evaluation of a programmable

pseudorandom function (OPPRF), which we believe is of independent interest and

may find applications in other applications as well.

1.3.3 PM/PSI Real-world Applications.

We consider the “Private Contact Discovery” problem. In this scenario, when a

new user signs up for a social networking service, she is required to identify which

of her existing contacts also use the service. Most of the current services (e.g.

WhatsApp) ask the new user to send her/his contacts to their servers. Conse-

quently, the service providers hold significant information about the user such as

the user’s name, phone numbers, emails, and friends that have not registered for

the service, and possibly much more. Recently, a German court has ruled that a
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user is not allowed to upload her contact list to the WhatsApp servers without

written permission of all of her contacts.

To address the privacy concerns mentioned above, we present a novel sys-

tem [DRRT18] in which the user learns only the common list of its own contacts

and the server’s user database of the service providers, while the server can learn

only the (approximate) size of the user’s list. We combine several existing cryp-

tographic tools and propose concrete optimizations tailored for this application.

Our contact discovery scheme between a client with 1024 contacts and a server

with 67 million user entries requires only 1.36 sec and costs only 4.28 MiB of

communication, which is truly practical via mobile networks.

1.3.4 PM/PSI Advanced Variant Functionality.

We present richer functionalities to capture more accurately the requirements of

real-world applications. Suppose a server holds a long text string and a client

holds a short pattern string. Secure pattern matching allows the client to learn

the locations in the long text where the pattern appears, while leaking nothing else

to either party besides the length of their inputs. In [KRT18], we investigate the

secure wildcard pattern matching problem, where the client’s pattern can include

wildcard characters that can match any character in the database. Indeed, DNA

analysis can be a promising application of our proposed wildcard pattern matching

scheme.

Additionally, we proposed a new cryptographic primitive [KRTW19] (called
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reverse private membership test) and considered its application for computing pri-

vate set union (i.e., compute the union of parties’ private sets without revealing

anything else to any other party). Private set union has several real-world applica-

tions, especially in network security, such as cyber risk assessment and management

via joint IP blacklists and joint vulnerability data.
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Chapter 2: Background Theory

2.1 Notation

Throughout this thesis we use the following notation. We denote vectors in bold

a, and matrices in capitals A. For the vector, we let a[i,j] denote the sub-vector of

a from i-th bit to j-th bit, and ai denote the i-th bit of vector a. Given vectors

a = a1‖ · · · ‖an and b = b1‖ · · · ‖bn, we define ⊕ and · operations as follows. We

use the notation a⊕ b to denote the vector (a1⊕ b1)‖ · · · ‖(an⊕ bn). Similarly, the

notation a · b denotes the vector (a1 · b1)‖ · · · ‖(an · bn). Let c ∈ {0, 1}, then c · a

denotes the vector (c · a1)‖ · · · ‖(c · an). For a matrix A, we let ai denote the i-th

row of A, aj denote the j-th column of A; Aji denote the entry of A at the i-th row

and the j-th column.

The computational and statistical security parameters are denoted by κ, λ,

respectively. [m] to denote a set {1, . . . ,m}.

Consider an alphabet Σ. Wildcard is denoted by ?. We define a pattern

matching relation � via the following rules: (1) a � a for a ∈ Σ; (2) ? � a for

a ∈ Σ. We extend the notation to vectors as x � y ⇔ (∀i)xi � yi. If p � x we

say that x matches the pattern p.

We write dH(x,) to denote the hamming weight of a binary string x. Our

computational security parameter is κ and statistical security parameter is σ.
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2.2 Secure Computation

The security of a secure multi-party protocol is formally defined by comparing

the distribution of the outputs of all parties in the execution of the protocol π to

an ideal model where a trusted third party is given the inputs from the parties,

computes f and returns the outputs. The idea is that if it is possible to simulate

the view of the adversary in the real execution of the protocol, given only its view

in the ideal model (when it only sees its input and output), then the adversary

cannot do in the real execution anything that is impossible in the ideal model, and

hence the protocol is said to be secure.

In the real-world execution, the parties often execute the protocol in the pres-

ence of an adversary A who corrupts a subset of the parties. In the ideal execution,

the parties interact with a trusted party that evaluates the function f in the pres-

ence of a simulator Sim that corrupts the same subset of parties. There are two

classical security models.

• Colluding model: This is modeled by considering a single monolithic adver-

sary that captures the possibility of collusion between the dishonest parties.

The protocol is secure if the joint distribution of those views can be simu-

lated.

• Non-colluding model: This is modeled by considering independent adver-

saries, each captures the view of each independent dishonest party. The

protocol is secure if the individual distribution of each view can be simu-

lated. In this work, we study a model that we assume to know at least two
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parties that do not collude.

There are also two adversarial models. In the semi-honest (or honest-but-

curious) model, the adversary is assumed to follow the protocol, but attempts to

obtain extra information from the execution transcript. In the malicious model,

the adversary may follow any arbitrary strategy.

The following definitions present a simplified form of the non-collusion/collusion

semi-honest security [Ode09, KMR11] in multi-party setting.

Real-world execution. The real-world execution of protocol Π takes place

between parties (P1, . . . , Pn) and adversaries (A1, . . . ,Am), where m < n. Let

H ∈ [n] denote the honest parties, I ∈ [n] denote the set of corrupted and non-

colluding parties and C ∈ [n] denote the set of corrupted and colluding parties.

At the beginning of the execution, each party Pi∈[n] receives its input xi and

an auxiliary input zi while each adversary Ai∈[m−1] receives an index i ∈ I that

indicates the party it corrupts, while adversary Am receives C indicating the set

of parties it corrupts.

For all i ∈ H, let OUTi denote the output of Pi and for i ∈ I ∪ C, let OUT′i

denote the view of party Pi during the execution of Π. The ith partial output of a

real-world execution of Π between parties (P1, . . . , Pn) in the presence of adversaries

A = (A1, . . . ,Am) is defined as

REALiΠ,A,I,C,zi(k, xi)
def
= {OUTj | j ∈ H} ∪ OUT′i

Ideal-world execution. In the ideal-world execution, all the parties interact
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with a trusted party that evaluates a function f . As in the real-world execution,

the ideal execution begins with Pi∈[n] receives its input xi and an auxiliary input zi.

Since we consider a semi-honest setting, each party Pi∈[n] sends xi to the trusted

party. The trusted party then returns f(x1, . . . , xn) to all the parties.

For all i ∈ H, let OUTi denote the output returned to Pi by the third party,

and for i ∈ I ∪C, let OUT′i denote some value output by party Pi. The ith partial

output of a ideal-world execution of Π between parties (P1, . . . , Pn) in the presence

of independent simulators S = (S1, . . . ,Sm) is defined as

IDEALiΠ,S,I,C,zi(k, xi)
def
= {OUTj | j ∈ H} ∪ OUT′i

Definition 2.2.1. (Semi-Honest Security) Suppose f is a deterministic-time n-

party functionality (deterministic in all cases considered in this paper), and Π is

the protocol. Let xi be the parties’ respective private inputs to the protocol. Let

I ∈ [n] denote the set of corrupted and non-colluding parties and C ∈ [n] denote

the set of corrupted and colluding parties. We say that protocol Π(I, C) securely

computes deterministic functionality f if there exist probabilistic polynomial-time

simulators Simi∈m for m < n such that all adversaries A = (A1, . . . ,Am), for all

x̄← {0, 1}? and z̄ ← {0, 1}?, and for all i ∈ [m],

{REALiΠ,A,I,C,z̄(k, x̄)=̃{IDEALiΠ,Sim,I,C,z̄(k, x̄)}

Where S = (S1, . . . ,Sm) and S = Simi(Ai)

Definition 2.2.2. (Malicious Security) Suppose f is a deterministic-time n-party



13

functionality (deterministic in all cases considered in this paper), and Π is the

protocol. Let xi be the parties’ respective private inputs to the protocol. Let I ∈ [n]

denote the set of corrupted and non-colluding parties and C ∈ [n] denote the set of

corrupted and colluding parties. We say that protocol Π(I, C) securely computes

deterministic functionality f if there exist probabilistic polynomial-time simulators

Simi∈m for m < n such that all all probabilistic polynomial time adversaries A =

(A1, . . . ,Am), for all x̄← {0, 1}? and z̄ ← {0, 1}?, and for all i ∈ [m],

{REALiΠ,A,I,C,z̄(k, x̄)=̃{IDEALiΠ,Sim,I,C,z̄(k, x̄)}

Where S = (S1, . . . ,Sm) and S = Simi(Ai)

2.3 Oblivious transfer

Oblivious Transfer (OT) has been a central primitive in the area of secure compu-

tation. Indeed, the original protocols of Yao [Yao86] and GMW [Gol04, GMW87]

both use OT in a critical manner. In fact, OT is both necessary and sufficient for

secure computation [Kil88]. Until early 2000’s, the area of generic secure computa-

tion was often seen mainly as a feasibility exercise, and improving OT performance

was not a priority research direction. This changed when Yao’s Garbled Circuit

(GC) was first implemented [MNPS04] and a surprisingly fast OT protocol (which

we will call IKNP) was devised by Ishai et al. [IKNP03].

The IKNP OT extension protocol [IKNP03] is truly a gem; it allows 1-out-

of-2 OT execution at the cost of computing and sending only a few hash values
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(but a security parameter of public key primitives evaluations were needed to

bootstrap the system). IKNP was immediately noticed and since then universally

used in implementations of the Yao and GMW protocols. It took a few years to

realize that OT extension’s use goes far beyond these fundamental applications.

Many aspects of secure computation were strengthened and sped up by using

OT extension. For example, Nielsen et al. [NNOB12] propose an approach to

malicious two-party secure computation, which relates outputs and inputs of OTs

in a larger construction. They critically rely on the low cost of batched OTs.

Another example is the application of information-theoretic Gate Evaluation Secret

Sharing (GESS) [Kol05] to the computational setting [KK12]. The idea of [KK12] is

to stem the high cost in secret sizes of the GESS scheme by evaluating the circuit

by shallow slices, and using OT extension to efficiently “glue” them together.

Particularly relevant for our work, efficient OTs were recognized by Pinkas et

al. [PSZ14] as an effective building block for private set intersection, which we

discuss in more detail later.

The IKNP OT extension, despite its wide and heavy use, received very few

updates. In the semi-honest model it is still state-of-the-art. Robustness was

added by Nielsen [Nie07], and in the malicious setting it was improved only very

recently [ALSZ15, KOS15]. Improvement for short secret sizes, motivated by the

GMW use case, was proposed by Kolesnikov and Kumaresan [KK13]. We use ideas

from their protocol, and refer to it as the KK protocol. Under the hood, KK [KK13]

noticed that one core aspect of IKNP data representation can be abstractly seen

as a repetition error-correcting code, and their improvement stems from using
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Parameters: Sender S, receiver R, length κ
Functionality:

• Wait for an input b← {0, 1} from the receiver R.

• Choose m0,m1 ← {0, 1}κ, and give both to sender S.

• Give mb to receiver R.

Figure 2.1: The FκROT ideal functionality for Random Oblivious Transfer.

a better code. As a result, instead of 1-out of-2 OT, a 1-out of-n OT became

possible at nearly the same cost, for n up to approximately 256. In the same

year, [ALSZ13] presented several IKNP optimizations and several weaker variants

of OT. In Random OT (ROT), the sender’s OT inputs (m0,m1) are chosen at

random, therefore, it allows the protocol itself to give him the values (m0,m1)

randomly. With ROT, the bandwidth requirement is significantly reduced since

the sender sends nothing to receiver. In our construction, we require this weaker

variant, random OT, whose functionality is described in Figure 2.1.

2.4 Oblivious PRFs

An oblivious pseudorandom function (OPRF) [FIPR05] is a protocol in which a

sender learns (or chooses) a random PRF seed s while the receiver learns F (s, r),

the result of the PRF on a single input r chosen by the receiver. While the general

definition of an OPRF allows the receiver to evaluate the PRF on several inputs,

in this paper we consider only the case where the receiver can evaluate the PRF

on a single input.
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Parameters: A PRF F and bound t.

Behavior: Wait for input (q1, . . . , qt) from the receiver R. Sample a random
PRF seed k and give it to the sender S. Give (F (k, q1), . . . , F (k, qt)) to the
receiver.

Figure 2.2: The OPRF ideal functionality FF,toprf

The central primitive of this work, an efficient OPRF protocol, can be viewed

as a variant of Oblivious Transfer (OT) of random values. We build it by modifying

the core of OT extension protocols [IKNP03, KK13], and its internals are much

closer to OT than to prior works on OPRF. Therefore, our presentation is OT-

centric, with the results stated in OPRF terminology.

OT of random messages shares many properties with OPRF. In OT of random

messages, the sender learns random m0,m1 while the receiver learns mr for a

choice bit r ∈ {0, 1}. One can think of the function F ((m0,m1), r) = mr as a

pseudorandom function with input domain {0, 1}. Similarly, one can interpret 1-

out-of-n OT of random messages as an OPRF with input domain {1, . . . , n}. The

OPRF functionality is described in Figure 2.2.

2.5 Cuckoo Hashing

We review the basics of Cuckoo hashing [PR01], specifically the variant of Cuckoo

hashing that involves a stash [KMW08]. In basic Cuckoo hashing, there are m

bins, a stash, and several random hash functions h1, . . . , hk (often k = 2), each

with range [m]. The invariant is that any item x stored in the Cuckoo hash table

is stored either in the stash or (preferably) in one of the bins {h1(x), . . . , hk(x)}.
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Each non-stash bin holds at most one item. To insert and element x into a Cuckoo

hash table, we place it in bin hi(x), if this bin is empty for any i. Otherwise,

choose a random i ∈R [k], place x in bin hi(x), evict the item currently in hi(x),

and recursively insert the evicted item. After a fixed number of evictions, give up

and place the current item in the stash.

2.6 Private Matching and Its Extension

2.6.1 Private Matching (PM)

We present a special case of PM in which the sender with input string x0 interacts

with a receiver with input string x1 in the following way. The receiver learns a

bit indicating whether x0 = x1 and nothing else, while the sender learns nothing

about x1. We describe the ideal functionality for this special PM in Figure 2.3.

To our knowledge, PM was first introduced in 1996 by Fagin, Naor, and Win-

kler [FNW96]. Follow-up works[NP99, BST01, Lip03] improved the efficiency of

PM, while still relying on expensive public-key operations. PM is heavily used in

two-party private set intersection (PSI) protocols [FNP04].

2.6.2 Private Set Intersection (PSI)

PSI is a special case of secure PM computation. The guarantees of PSI are captured

in the ideal functionality FPSI defined in Figure 2.4. For security against malicious

parties, we use the framework of universal composability (UC) [Can01].
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Parameters: Two parties: sender S and receiver R

Functionality:

• Wait for input x0 ∈ {0, 1}∗ from the sender S.

• Wait for input x1 ∈ {0, 1}∗ from the receiver R.

• Give the receiver R output 1 if x0 = x1 and 0 otherwise.

Figure 2.3: The Private Matching ideal functionality Fpm

Parameters: The number of parties n, and the size of the parties’ sets m.

Functionality:

• Wait for an input Xi = {x1
i , . . . , x

m
i } ⊆ {0, 1}∗ from each party Pi.

• Give output
n⋂
i=1

Xi to all parties.

Figure 2.4: PSI ideal functionality.

2.6.3 Private Set Union (PSU)

Private set union (PSU) is a special case of secure two-party computation. PSU

allows two parties holding sets X and Y respectively, to compute the union X∪Y ,

without revealing anything else, namely what are the items in the intersection of

X and Y . The guarantees of PSU are captured in the ideal functionality FPSI

defined in Figure 2.5.
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Parameters: Set sizes m and n; two parties: sender S and receiver R

Functionality:

• Wait for an input X = {x1, x2, . . . , xn} ⊆ {0, 1}∗ from sender S, and an
input Y = {y1, y2, . . . , ym} ⊆ {0, 1}∗ from receiver R

• Give output X ∪ Y to the receiver R.

Figure 2.5: Private Set Union Functionality Fm,npsu .

Parameters: A text length n, a pattern length m, and two parties: sender
S and receiver R

Functionality:

• Wait for text x ∈ {0, 1}n from the sender S

• Wait for pattern p ∈ {0, 1, ?}m from the receiver R

• Give the receiver R output {i ∈ [n − m + 1] | p � x[i,i+m−1]} (see
Section 2.1 for notation)

Figure 2.6: Wildcard Pattern Matching functionality Fn,mwpm.

2.6.4 Wildcard Pattern Matching (WPM)

In secure pattern matching with wildcards, which we will call WPM, the receiver’s

pattern can include wildcard characters that can match any character in the data,

hence p ∈ (Σ ∪ {?})m. With wildcards, the security requirements are more de-

manding: the server should not learn which positions of p contain wildcards, and

in the case of a match the receiver should not learn the text character that matches

a wildcard character in the pattern (unless this could be inferred from the presence

or absence of an overlapping match). The ideal functionality WPM is defined in

Figure 2.6.
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2.7 Correlation Robustness

The OT extension protocol of IKNP [IKNP03] is proven secure under a so-called

correlation robustness assumption on the underlying hash function. Our protocol

makes use of the following generalization of this notion:

Definition 2.7.1. Let H be a hash function with input length n. Then H

is d-Hamming correlation robust if, for any strings z1, . . . , zm ∈ {0, 1}∗,

a1, . . . , am, b1, . . . , bm ∈ {0, 1}n with dH(bi,≥)d, the following distribution, induced

by random sampling of s← {0, 1}n, is pseudorandom:

H(z1‖a1 ⊕ [b1 · s]), . . . , H(zm‖am ⊕ [bm · s])

As in the overview, “·” denotes bitwise-AND.

The definition generalizes previous ones in the following way:

• If d = n, then the only legal choice of bi is 1n, and H(zi‖ai⊕ [bi ·s]) simplifies

to H(zi‖ai ⊕ s). Restricting the definition in this way, and taking zi = i

corresponds to the IKNP notion of correlation robustness.

• If the bi values are required to be elements of a linear error correcting code C,

then the resulting definition is one under which the construction of [KK13]

is secure (for simplicity they prove security in the random oracle model).
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Chapter 3: Two-party PSI

Efficient Batched Oblivious PRF with Applications to Private Set Intersection

by Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, Ni Trieu, in CCS

[KKRT16].

SpOT-Light: Lightweight Private Set Intersection from Sparse OT Ex-

tension by Benny Pinkas, Mike Rosulek, Ni Trieu, Avishay Yanai, in

CRYPTO [PRTY19]

3.1 Introduction

Private set intersection (PSI) allows two parties, who each hold a set of items,

to learn the intersection of their sets without revealing anything else about the

items. PSI has many privacy-preserving applications: e.g., private contact dis-

covery [CLR17, RA17, DRRT18]1, DNA testing and pattern matching [TKC07],

remote diagnostics [BPSW07], record linkage [HMFS17], and measuring the effec-

tiveness of online advertising [IKN+17]. Over the last several years PSI has become

truly practical with extremely fast implementations [CKT10, CGT12, DCW13,

PSZ14, KKRT16, KMP+17, RR17b, CLR17, HV17, RA17, GNN17, CCS18] that

can process millions of items in seconds.

1See also https://whispersystems.org/blog/contact-discovery/

https://whispersystems.org/blog/contact-discovery/
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The standard ways to measure the cost of a protocol are running time and

communication. Depending on which of these metrics is prioritized, a different

protocol will be preferred.

Minimizing time. The fastest known PSI protocols are all based on efficient

oblivious transfers (OT). The idea is to reduce the PSI computation to many

instances of oblivious transfer. This approach is the fastest because modern OT

extension protocols [Bea96, IKNP03, ALSZ13] use only a small (fixed) number of

public-key operations (e.g., elliptic curve multiplications) but otherwise use only

cheap symmetric-key operations. The approach to PSI was introduced by Pinkas

et al. [PSZ14] and refined in a sequence of works [PSSZ15].

Minimizing communication. To the best of our knowledge, the PSI proto-

col with lowest communication in this setting is due to Ateniese et al. [ACT11].

This protocol requires communication that is only marginally more than a näıve

and insecure protocol (in which one party sends just a short hash of each item),

and also has the nice property of hiding the size of the input set. However, the

protocol requires at least n log n RSA exponentiations (for PSI of n items). These

requirements make the protocol prohibitively expensive in practice.2

A more popular (as well as the earliest) approach to low-communication PSI

is based on the commutative property of Diffie-Hellman key agreement (DH-PSI),

and appears in several works [Sha80, Mea86, HFH99]. The idea is for the parties

2We are not aware of any prior implementation of this protocol, but estimated the running
time through benchmark RSA exponentiations. For the set sizes we consider in this work, the
protocol would require many hours or even a day.
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to compute the intersection of {(H(x)α)β) | x ∈ X} and {(H(y)β)α) | y ∈ Y }

in the clear, where α and β are secrets known by Alice and Bob, respectively.

The DH-PSI protocol strikes a more favorable balance between communication

and computation than the RSA-based protocol. It requires n exponentiations in a

Diffie-Hellman group, which are considerably cheaper than RSA exponentiations

but considerably more expensive than the symmetric-key operations used in OT

extension. In terms of communication, it requires less than 3 group elements

per item. When instantiated with compact elliptic curve groups (ECDH-PSI),

the communication complexity is very small. For example, Curve25519 [Ber06]

provides 128-bit security with only 256-bit group elements (around 600 bits of

communication per item).

An ideal balance. Communication cost and overall running time are clearly

both important, but which metric best reflects the balance between the two costs,

and the true suitability of a protocol for practice? We argue that the most appro-

priate metric which balances the two costs is the monetary cost to run the protocol

on a cloud computing service. First, a typical real-world application of PSI is likely

to use such a service rather than in-house computing. Second, the pricing model

of such services already takes into account the difference in cost to send a bit vs.

perform a CPU clock cycle.
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3.2 Related Work and Comparison

DH-PSI Our protocol uses less communication than DH-PSI, even when the

latter is instantiated with the most compact elliptic curve known. In terms of

computation, our protocol uses only symmetric-key operations (apart from a fixed

number of base OTs). Its main computational bottleneck is computing polynomial

interpolation, requiring either O(n log2 λ) or O(n log2 n) finite field operations (i.e.,

multiplications), depending on the variant, where n is the set size and λ is the sta-

tistical security parameter. The DH-PSI protocol computes O(n) exponentiations

(or elliptic curve multiplications, which are each computed using log |G| multipli-

cation operations in the underlying cyclic group G). If we consider the basic unit

of computation to be a multiplication in the underlying field/group, then our pro-

tocol uses at most O(n log2 n) multiplications whereas DH-PSI uses O(n log |G|)

multiplications. The experiments that we describe in Section 3.4.5 demonstrate

that our protocol is substantially faster than DH-PSI for all realistic set sizes and

on all network configurations.

Our communication-optimized protocol variant has security against one mali-

cious party. In contrast, DH-PSI is not easily adapted to malicious security, even

against just one party.3 In order to harden DH-PSI against malicious parties, the

leading protocol of De Cristofaro et al. [CKT10] requires both parties to run zero-

knowledge proofs involving all of their input items. Thus, even one-sided malicious

security requires significant overhead to the semi-honest protocol.

3The main challenge is that a simulator would have to extract effective inputs {x1, . . . , xn}
from a corrupt party, seeing only {H(x1)α, . . . ,H(xn)α}.
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While we do not formally consider security against quantum adversaries, we

do point out that our protocol exclusively uses primitives that can be instantiated

with post-quantum security (OT, PRFs, and hash functions). DH-PSI on the other

hand is trivially broken against quantum adversaries.

Protocols based on an RSA accumulator. The protocol of [ACT11] has a

very low communication overhead of roughly λ + log2 n bits per item, which may

even be optimal (even for an insecure protocol). On the other hand, it computes

O(n log n) RSA exponentiations, and as such is slower than DH-PSI by at least

an order of magnitude (due to the log n factor, and to RSA exponentiations being

slower than elliptic curve multiplications). Our protocols are substantially faster

than both of these protocols (see Section 3.4.5). This protocol also requires a

random oracle, whereas for semi-honest security ours is in the standard model.

OT-based protocols In our CCS paper [KKRT16], the proposed protocol com-

putes an intersection of million-item sets in about 4 seconds. Our CRYPTO pa-

per [PRTY19] requires 40-50% less communication compared to [KKRT16] and

is the fastest over low-bandwidth networks (30 Mbps and lower). Over high-

bandwidth networks, even though ours [PRTY19] is slower than [KKRT16], this

protocol still requires less monetary cost (see Section 3.4.5).

Independently, Lambæk [Lam16] and Patra et al. [PSS17] showed how to en-

hance the protocols of [PSZ14, KKRT16] with a security against a malicious re-

ceiver with almost no additional overhead. Interestingly, our protocol naturally

provides security against a malicious sender. In both of these protocols, if the
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parties have sets of very different sizes then the party with more items should play

the role of sender. Providing a different flavor of one-sided malicious security is

therefore potentially valuable.

Ghosh and Nilges [GN19] proposed a PSI protocol based on oblivious linear

function evaluation (OLE). This protocol requires 2n passive OLE invocations,

polynomial interpolations at 3 times (one of degree n, and two of degree 2n), and

polynomial evaluation on 2n + 1 points at 4 times. In terms of communication,

the required passive OLE instances [IPS09, GNN17] require 8(n+ 1) elements sent

from the receiver to the sender to create a noisy encoding, and the cost of doing

4n-out-of-8(n+1) OT which incurs an overhead of at least 8(n+1) on the number

of Correlated OT [ALSZ13]. Hence, this OLE-based PSI protocol requires at least

8(n + 1)(κ + 2`) bits communication, where ` is bit-length of item. For example,

when ` = 128, our protocols show a factor of 4.8− 6.3× improvement in terms of

communication.

Recently, Falk, Noble and Ostrovsky [FNO18] presented a protocol for PSI

that achieves linear communication complexity relying on standard assumption

(i.e. in the OT-hybrid model, assuming the existence of correlation robust hash

and one-way functions) and in the standard model (i.e. without a random oracle).

This is in contrast to previous protocols that achieve linear communication but

rely on stronger assumptions (like [CKT10, CT12] that are based on the one-more

RSA assumption and a random oracle); and to previous OT-based protocols that

achive only super-linear communication complexity due to the stash handling. In

the protocol of [FNO18], just like previous OT-based protocols, Bob maps his n
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items to O(n) bins using a Cuckoo hashing, hence, it has at most one item in

each bin. Bob also maintains a special bin for items that could not be mapped to

the ‘regular’ bins, this special bin is called the stash and it contains ω(1) items.

Alice maps her items to O(n) bins using simple hashing, hence, she has at most

O(log n/ log log n) items in each bin with high probability. Then, Bob can obtain

the intersection between items in its ‘regular’ bins and Alice’s set using the BaRK-

OPRF technique of [KKRT16] with communication complexity O(n · κ) (where

κ is the computational security parameter). It remains to compare the items in

Bob’s stash to all Alice’s items; since the stash is of size ω(1) this comparison

would naively require ω(n ·κ) communication overall. However, the observation in

[FNO18] is that this comparison can be performed using a separate PSI protocol

that is specialized for unbalanced set sizes in which Alice has much more items

than Bob; such a protocol can achieve communication complexity that depends

only on the larger set size, therefore, the overall communication complexity of

[FNO18] is O(n · κ) rather than ω(n · κ). We note that in concurrent to their

work, the protocol [PRTY19] achieves the same (linear) communication complexity,

under the same standard assumptions and without a random oracle, using a new

primitive, namely the Sparse OT Extension.

Other paradigms. Other approaches for PSI have been proposed, includ-

ing ones based on Bloom filters [DCW13] and generic MPC [HEK12]. Pinkas et

al. [PSZ14, PSSZ15] performed a comprehensive comparison of semi-honest PSI

techniques and found the OT-extension paradigm to strictly dominate others in

terms of performance. They found that the best Bloom-filter approach is 2x worse
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in runtime, 4x worse in communication; best generic-MPC-based approach is 100x

worse in runtime and 10x worse in communication. For this reason, we do not

include these protocol paradigms in further comparisons.

Other related work. One way of viewing our new technique is that we

covertly embed some protocol messages into a polynomial. Similar ideas appear

in [MPP10, CDJ16]. In particular, [CDJ16] explicitly propose to embed private

equality-test protocol messages into a polynomial, to yield a PSI protocol. Their

protocol is based on the DH paradigm, and therefore requires a linear number of

exponentiations. They also achieve a stronger covertness property (participants

cannot distinguish other participants from random noise, until the protocol termi-

nates). In our case, we look inside IKNP OT extension and identify the minimal

part of the protocol that needs to be covertly embedded into a polynomial, in order

to achieve standard (semi-honest or malicious) security.

3.3 Efficient Batched Oblivious PRF with Applications to Private

Set Intersection

We describe a lightweight protocol for oblivious evaluation of a pseudorandom

function (OPRF) in the presence of semi-honest adversaries. In an OPRF protocol

a receiver has an input r; the sender gets output s and the receiver gets output

F (s, r), where F is a pseudorandom function and s is a random seed. Our protocol

uses a novel adaptation of 1-out-of-2 OT-extension protocols, and is particularly

efficient when used to generate a large batch of OPRF instances. The cost to
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realize m OPRF instances is roughly the cost to realize 3.5m instances of standard

1-out-of-2 OTs (using state-of-the-art OT extension).

We explore in detail our protocol’s application to semi-honest secure private set

intersection (PSI). The fastest state-of-the-art PSI protocol (Pinkas et al., Usenix

2015) is based on efficient OT extension. We observe that our OPRF can be used

to remove their PSI protocol’s dependence on the bit-length of the parties’ items.

We implemented both PSI protocol variants and found ours to be 3.1–3.6× faster

than Pinkas et al. for PSI of 128-bit strings and sufficiently large sets. Concretely,

ours requires only 3.8 seconds to securely compute the intersection of 220-size sets,

regardless of the bit length of the items. For very large sets, our protocol is only

4.3× slower than the insecure näıve hashing approach for PSI.

3.3.1 Technical Overview of Our Results

We start with the OT-extension paradigm of Ishai, Kilian, Nissim & Petrank

(IKNP) [IKNP03]. The goal of OT extension is to use a small number k of “base-

OTs,” plus only symmetric-key operations, to achieve m � k “effective OTs.”

Here, k is chosen depending on the computational security parameter κ; in the

following we show to what value k should be set. Below we describe an OT

extension that achieves m 1-out-of-2 OTs of random strings, in the presence of

semi-honest adversaries.

We follow the notation of [KK13] as it explicates the coding-theoretic frame-

work for OT extension. Suppose the receiver has choice bits r ∈ {0, 1}m. He



30

chooses two m × k matrices (m rows, k columns), T and U . Let tj,uj ∈ {0, 1}k

denote the j-th row of T and U , respectively. The matrices are chosen at random,

so that:

tj ⊕ uj = rj · 1k
def
=


1k if rj = 1

0k if rj = 0

The sender chooses a random string s ∈ {0, 1}k. The parties engage in k

instances of 1-out-of-2 string-OT, with their roles reversed, to transfer to sender

S the columns of either T or U , depending on the sender’s bit si in the string s

it chose. In the i-th OT, the receiver gives inputs ti and ui, where these refer

to the i-th column of T and U , respectively. The sender uses si as its choice bit

and receives output qi ∈ {ti,ui}. Note that these are OTs of strings of length

m� k — the length of OT messages is easily extended. This can be done, e.g., by

encrypting and sending the two m-bit long strings, and using OT on short strings

to send the right decryption key.

Now let Q denote the matrix obtained by the sender, whose columns are qi.

Let qj denote the jth row. The key observation is that

qj = tj ⊕ [rj · s] =


tj if rj = 0

tj ⊕ s if rj = 1

(3.1)

Let H be a random oracle (RO). We have that the sender can compute two random

strings H(qj) and H(qj⊕s), of which the receiver can compute only one, via H(tj).

Note that tj equals either qj or qj ⊕ s, depending on the receiver’s choice bit rj.
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Note that the receiver has no information about s, so intuitively he can learn only

one of the two random strings H(qj), H(qj ⊕ s). Hence, each of the m rows of the

matrix can be used to produce a single 1-out-of-2 OT.

As pointed out by [IKNP03], it is sufficient to assume that H is a correlation-

robust hash function, a weaker assumption than RO. A special assumption is re-

quired because the same s is used for every resulting OT instance. See Section 3.3.2

for definition of correlation-robustness.

Coding interpretation In IKNP, the receiver prepares secret shares of T and

U such that each row of T ⊕ U is either all zeros or all ones. Kolesnikov &

Kumaresan [KK13] interpret this aspect of IKNP as a repetition code and suggest

to use other codes instead.

Consider how we might use the IKNP OT extension protocol to realize 1-out-

of-2` OT. Well, instead of a choice bit ri for the receiver, ri will now be an `-bit

string. Let C be a linear error correcting code of dimension ` and codeword length

k. The receiver will prepare matrices T and U so that tj ⊕ uj = C(rj).

Now, generalizing Equation 3.1 the sender receives

qj = tj ⊕ [C(rj) · s] (3.2)

where “·” now denotes bitwise-AND of two strings of length k. (Note that when

C is a repetition code, this is exactly Equation 3.1.)

For each value r′ ∈ {0, 1}`, the sender associates the secret value H(qj⊕ [C(r′) ·

s]), which it can compute for all r′ ∈ {0, 1}`. At the same time, the receiver can
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compute one of these values, namely, H(tj). Rearranging Equation 3.2, we have:

H(tj) = H(qj ⊕ [C(rj) · s])

Hence, the value that the receiver can learn is the secret value that the sender

associates with the receiver’s choice string r′ = rj.

At this point, OT of random strings is completed. For OT of chosen strings,

the sender will use each H(qi⊕ [C(r) ·s]) as a key to encrypt the r’th OT message.

The receiver will be able to decrypt only one of these encryptions, namely one

corresponding to its choice string rj.

To argue that the receiver learns only one string, suppose the receiver has

choice bits rj but tries to learn also the secret H(qj ⊕ [C(r̃) · s]) corresponding to

a different choice r̃. We observe:

qj ⊕ [C(r̃) · s] = tj ⊕ [C(rj) · s]⊕ [C(r̃) · s]

= tj ⊕ [(C(rj)⊕ C(r̃)) · s]
(3.3)

Importantly, everything in this expression is known to the receiver except for

s. Now suppose the minimum distance of C is κ (the security parameter). Then

C(rj)⊕C(r̃) has Hamming weight at least κ. Intuitively, the adversary would have

to guess at least κ bits of the secret s in order to violate security. The protocol is

secure in the RO model, and can also be proven under the weaker assumption of

correlation robustness, following [IKNP03, KK13].

Finally, we remark that the width k of the OT extension matrix is equal to the



33

length of codewords in C. The parameter k determines the number of base OTs

and the overall cost of the protocol.

Pseudorandom codes The main technical observation we make in this work

is pointing out that the code C need not have many of the properties of error-

correcting codes. In particular,

• We make no use of decoding, thus our code does not need to be efficiently

decodable.

• We require only that for all possibilities r, r′, the value C(r) ⊕ C(r′) has

Hamming weight at least equal to the computational security parameter

κ. In fact, it is sufficient even if the Hamming distance guarantee is only

probabilistic — i.e., it holds with overwhelming probability over choice of C

(we discuss subtleties below).

For ease of exposition, imagine letting C be a random oracle with suitably long

output. (Later we will show that C can be instantiated from a pseudorandom

function in a straight-forward way.) Intuitively, when C is sufficiently long, it

should be hard to find a “near-collision.” That is, it should be hard to find values r

and r′ such that C(r)⊕C(r′) has low (less than a computational security parameter

κ) Hamming weight. Later in Table 5.2 we compute the parameters more precisely,

but for now we simply point out that a random function with output length k = 4κ

suffices to make near-collisions negligible in our applications.

We refer to such a function C (or family of functions, in our standard-model
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instantiation) as a pseudorandom code (PRC), since its coding-theoretic prop-

erties — namely, minimum distance — hold in a cryptographic sense.

By relaxing the requirement on C from an error-correcting code to a pseudo-

random code, we remove the a-priori bound on the size of the receiver’s choice

string! In essence, the receiver can use any string as its choice string; the sender

can associate a secret value H(qj ⊕ [C(r′) · s]) for any string r′. As discussed

above, the receiver is only able to compute H(tj) = H(qj ⊕ [C(r) · s]) — the

secret corresponding to its choice string r. The property of the PRC is that, with

overwhelming probability, all other values of qj ⊕ [C(r̃) · s] (that a polytime player

may ever ask) differ from tj in a way that would require the receiver to guess at

least κ bits of s.

Interpretation as an oblivious PRF variant We can view the functionality

achieved by this protocol as a kind of oblivious PRF. Intuitively, r 7→ H(q ⊕

[C(r) · s]) is a function that the sender can evaluate on any input, whose outputs

are pseudorandom, and which the receiver can evaluate only on its chosen input r.

In Section 3.3.2 we give a formal definition of the functionality that we achieve.

The main subtleties of the definition are:

1. the fact that the receiver learns slightly more than the output of this “PRF”

— in particular, the receiver learns t = q ⊕ [C(r) · s] rather than H(t);

2. the fact that the protocol realizes many instances of this “PRF” but with

related keys — s and C are shared among all instances.
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We prove our construction secure assuming C is a pseudorandom code and that

H satisfies a natural generalization of the “correlation robust” assumption from

[IKNP03].

Summary & cost With our new variant of the IKNP protocol, we can obtain

m OPRF instances efficiently, using only k base OTs plus symmetric-key opera-

tions. Compared to IKNP-paradigm OT extension for 1-out-of-2 OTs, the main

differences in cost are:

• Cost associated with the increased width of the OT extension matrices. In

our case, the matrix has width k rather than κ — concretely 3κ < k < 4κ

in our applications. Note that the parameter k controls the number of base

OTs required.4

• Computational costs associated with the pseudorandom code C. While in

IKNP C is a repetition code, and in [KK13] C is a short Walsh-Hadamard

code, in our protocol C is cryptographic. However, we are able to instantiate

C using a PRF. In practice, we use AES as the PRF, and the associated hard-

ware acceleration for AES in modern processors makes the cost of computing

C minimal.

Application to private set intersection Private set intersection (PSI) refers

to a computation in which Alice has a set A of items, Bob has a set B of items,

4In our instantiation, we actually use IKNP to extend κ base OTs to k OTs, and then use those
k OTs as base OTs for BaRK-OPRF instances. Hence, the number of public-key OT operations
is unchanged. Still, the total communication cost remains proportional to km in our protocol
rather than κm.



36

and the two learn only A ∩B and nothing more.

We show how BaRK-OPRF can be used to significantly reduce the cost of semi-

honest-secure PSI. The current fastest protocol for the task is that of Pinkas et

al. [PSSZ15]. The protocol relies heavily on efficient OT extension (for standard

1-out-of-2 OTs).

Looking closely at the PSI protocol of [PSSZ15], we see that they use a number

of OTs that is proportional to N`, where N is the number of items in the parties’

sets and ` is the length (in bits) of those items. We can replace their use of 1-out-

of-2 OTs with a suitable use of BaRK-OPRF and remove the dependence on `. Our

protocol uses a number of BaRK-OPRF instances that is proportional only to N .

We implemented our BaRK-OPRF-based PSI protocol and compared its per-

formance to that of [PSSZ15]. For PSI on strings of length ` ∈ {64, 128} and

sufficiently large sets, our protocol is 2.3–3.6 times faster. This is a significant

achievement in the already very polished PSI state of the art.

3.3.2 Our Oblivious PRF Variant

3.3.2.1 Pseudorandom Codes

We now formalize the notion of a pseudorandom code, motivated in Section 3.3.1.

Definition 3.3.1. Let C be a family of functions. We say that C is a (d, ε) pseu-
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dorandom code (PRC) if for all strings x 6= x′,

Pr
C←C

[
dH(C(x)⊕ C(x′), <)d

]
≤ 2−ε

That is, a (d, ε)-PRC guarantees that the hamming distance of two codewords

is less or equal to d with probability at most 2−ε.

The reader may find it convenient to think of C as a random oracle. However,

it suffices for C to be a pseudorandom function instantiated with random seed:

Lemma 1. Suppose F : {0, 1}κ × {0, 1}∗ → {0, 1}n is a pseudorandom function.

Define C = {F (s, ·) | s ∈ {0, 1}κ}. Then C is a (d, ε)-pseudorandom-code where:

2−ε = 2−n
d−1∑
i=0

(
n

i

)
+ ν(κ).

and ν is a negligible function.

Proof. Consider the following game. An adversary has strings x and x′ hard-coded.

It queries its oracle O on x and x′ and outputs 1 if O(x) and O(x′) are within

Hamming distance d.

When O is instantiated as a random function, a simple counting argument

shows that the adversary outputs 1 with probability 2−n
∑d−1

i=0

(
n
i

)
.

When O is instantiated as a PRF F with random seed, the probability must

be within ν(κ) of the above probability, where ν is negligible. The adversary’s

output probability in this instantiation is exactly the probability specified in the

PRC security definition, so the lemma follows.
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Note that in our typical usage of PRCs, the choice of C (in this case, the seed to

the PRF) is a public value. But in both the security definition for PRC and in this

analysis, the values x and x′ are fixed before the PRF key is chosen. Whether or

not F (s, x) and F (s, x′) are within Hamming distance d is not affected by making

the PRF seed public.

3.3.2.2 Our Oblivious PRF Variant

As outlined in Section 3.3.1, our main construction is a variant of OT-extension

which associates a pseudorandom output R(x) for every possible input r ∈ {0, 1}∗.

The sender can compute R(r) for any r, while the receiver learns R(x) for

only a single value r. This functionality is reminiscent of an oblivious PRF

(OPRF) [FIPR05]. In this section we describe how our construction can be in-

terpreted as a variant OPRF functionality.

In an OPRF functionality for a PRF F , the receiver provides an input5 r; the

functionality chooses a random seed s, gives s to the sender and F (s, r) to the

receiver.

In our protocol, the sender knows qj and s. We can consider these values as

keys to a PRF:

F ((qj, s), r) = H(j‖qj ⊕ [C(r) · s])

Intuitively, the sender can evaluate this PRF at any point, while the receiver can

5More general OPRF variants allow the receiver to learn the PRF output on many inputs —
here it suffices to limit the receiver to one input.
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evaluate it on only one. However, we point out some subtleties:

• In our protocol, the receiver learns tj = qj ⊕ [C(r∗) · s] for his chosen input

r∗, which is more information than the “PRF output” H(j‖tj). However,

even knowing tj, the other outputs of the “PRF” still look random. This

common feature of an OPRF protocol leaking slightly more than the PRF

output is called relaxed OPRF in [FIPR05].

• In our protocol, we realize many “OPRF” instances with related keys. In

particular, all instances have the same component s (and C).

We encapsulate these properties in the following definitions.

3.3.2.3 Our PRF variant

We refer to F as a relaxed PRF if there is another function F̃ , such that F (k, r)

can be efficiently computed given just F̃ (k, r). We then define the relevant notion

of security with respect to an adversary who can query the relaxed function F̃

rather than just F .

Definition 3.3.2. Let F be a relaxed PRF with output length v, for which we

can write the seed as a pair (k∗, k). Then F has m-related-key-PRF (m-RK-

PRF) security if the advantage of any PPT adversary in the following game is

negligible:

1. The adversary chooses strings x1, . . . , xn and m pairs (j1, y1), . . . , (jm, ym),

where yi 6= xji .
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2. Challenger chooses random values appropriate for PRF seeds k∗, k1, . . . , kn

and tosses a coin b← {0, 1}.

(a) If b = 0, the challenger outputs {F̃ ((k∗, kj), xj)}j and {F ((k∗, kji), yi)}i.

(b) If b = 1 the challenger chooses z1, . . . , zm ← {0, 1}v and outputs

{F̃ ((k∗, kj), xj)}j and {zi}i,

3. The adversary outputs a bit b′. The advantage of the adversary is Pr[b =

b′]− 1/2. ♦

Intuitively, the PRF is instantiated with n related keys (sharing the same k∗

value). The adversary learns the relaxed output of the PRF on one chosen input

for each key. Then any m additional PRF outputs (corresponding to any seed) are

indistinguishable from random by the adversary.

Lemma 2. Let C be a (d, ε+log2m)-PRC, where 1/2ε is a negligible function, Let

H be a d-Hamming correlation robust hash function. Define the following relaxed

PRF, for C ∈ C:

F
(

((C, s), (q, j)), r
)

= H(j‖q ⊕ [C(r) · s])

F̃
(

((C, s), (q, j)), r
)

= (j, C, q ⊕ [C(r) · s])

Then F has m-RK-PRF security.

Proof. In the m-RK-PRF game with this PRF, we can rewrite the adversary’s
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view as in Section 3.3.1 as:

(C, {tj}j, {H(ji‖tji ⊕ [(C(xji)⊕ C(yi)) · s])}i)

There are m terms of the form C(xji) ⊕ C(yi) for xji 6= yi. Each of these terms

has Hamming weight at least d with probability at least 1 − 2−ε−log2m over the

choice of C. By a union bound, all m terms have Hamming weight at least d with

probability 1 − 2−ε. Conditioning on this (overwhelmingly likely) event, we can

apply the d-Hamming correlation robust property of H to see that the H-outputs

are indistinguishable from random.

3.3.2.4 Our BaRK-OPRF functionality

In Figure 3.1 we formally describe the variant OPRF functionality we achieve. It

generates m instances of the PRF with related keys, and allows the receiver to

learn the (relaxed) output on one input per key.

The functionality is parameterized by a relaxed PRF F , a number m of in-
stances, and two parties: a sender and receiver.

On input (r1, . . . , rm) from the receiver,

• Choose random components for seeds to the PRF: k∗, k1, . . . , km and give
these to the sender.

• Give F̃ ((k∗, k1), r1), . . . , F̃ ((k∗, km), rm) to the receiver.

Figure 3.1: Batched, related-key OPRF (BaRK-OPRF) ideal functionality.
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3.3.3 Main construction

We present our main construction, which is a semi-honest secure protocol for the

functionality in Figure 3.1, instantiated with the relaxed PRF defined in Lemma 2.

3.3.3.1 Notation

We use the notation OTk
m to denote k instances of 1-out-of-2 string-OT where the

strings are m bits long. Let S denote the sender, and let R denote the receiver. In

OTk
m, the sender’s input is {(xj,0, xj,1)}j∈[k], i.e., m pairs of strings, each of length

m, and the receiver holds input {rj}j∈[k], where each rj is a choice bit. Note that

if S provides input {(xj,0, xj,1)}j∈[k] to OTk
m, and if R provides input {rj}j∈[k] to

OTk
m, then R receives back {xj,rj}j∈[k], while S receives nothing.

We note that to simplify notation via indexing, in the following we will refer to

the OT matrices as T0 and T1, rather than as T and U , as we did when presenting

high-level overview of our work.

3.3.3.2 The BaRK-OPRF construction

Our BaRK-OPRF protocol is presented in Figure 3.2. It closely follows the high-

level overview. Recall that we are considering a PRF whose seed is of the form

((C, sec), (j, qj)) and whose relaxed output is of the form t0,j = qj ⊕ (C(rj) · sec).

Theorem 3. The BaRK-OPRF protocol in Figure 3.2 securely realizes the func-

tionality of Figure 3.1, instantiated with the relaxed PRF defined in Lemma 2,
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Input of R: m selection strings r = (r1, . . . , rm), ri ∈ {0, 1}∗.

Parameters:

• A (κ, ε)-PRC family C with output length k = k(κ).

• A κ-Hamming correlation-robust H : [m]× {0, 1}k → {0, 1}v.
• An ideal OTk

m primitive.

Protocol:

0. S chooses a random C ← C and sends it to R.

1. S chooses sec← {0, 1}k at random. Let si denote the i-th bit of sec.

2. R forms m× k matrices T0, T1 in the following way:

• For j ∈ [m], choose t0,j ← {0, 1}k and set t1,j = C(rj)⊕ t0,j.

Let ti0, t
i
1 denote the i-th column of matrices T0, T1 respectively.

3. S and R interact with OTk
m in the following way:

• S acts as receiver with input {si}i∈[k].

• R acts as sender with input {ti0, ti1}i∈[k].

• S receives output {qi}i∈[k].

S forms m × k matrix Q such that the i-th column of Q is the vector
qi. (Note qi = tisi .) Let qj denote the j-th row of Q. Note, qj =
((t0,j ⊕ t1,j) · sec)⊕ t0,j. Simplifying, qj = t0,j ⊕ (C(rj) · sec).

4. For j ∈ [m], S outputs the PRF seed ((C, sec), (j, qj)).

5. For j ∈ [m], R outputs relaxed PRF output (C, j, t0,j).

Figure 3.2: The BaRK-OPRF protocol

in the presence of semi-honest adversaries, where κ is the computational security

parameter.
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Proof. When using the abstraction of our OPRF functionality, the proof is ele-

mentary.

Simulating S. The simulator receives output from the OPRF ideal functionality

consisting of related PRF seeds: a common (C, sec) and a qj for each j ∈ [m]. Let

Q be a matrix whose rows are the qj. Let qi denote the ith column of Q.

The simulator simulates an execution of the protocol in which S chooses C in

step 0, chooses sec in step 1, and receives output {qi}i∈[k] as OT output in step 3.

Simulating R. The simulator has input (r1, . . . , rm) and receives output from

the OPRF ideal functionality consisting of a relaxed PRF output (j, C, tj) for each

j ∈ [m].

The simulator simulates an execution of the protocol in which R receives C in

step 0 and samples t0,j = tj in step 2.

In both cases it is straightforward to check that the simulation is perfect.

3.3.4 Improving Private Set Intersection

The main application of BaRK-OPRF is to improve the performance of semi-honest-

secure private set intersection (PSI). Pinkas et al. [PSZ14] give a thorough

summary of many different paradigms for PSI in this model.

For our purposes, we summarize only the most efficient PSI protocol, which is

the OT-based paradigm of [PSZ14] including the optimizations suggested in follow

up work [PSSZ15]. Hereafter we refer to their protocol as the “PSSZ” protocol.
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3.3.4.1 The OPRF Implicit in PSSZ

The main building block of PSSZ, private equality test, can be viewed as a relaxed

OPRF based on random OTs (i.e., oblivious transfers of random messages), which

can be obtained efficiently from OT extension. The protocol is as follows, where

Bob has input r, with ` = |r|.

• The parties perform ` 1-out-of-2 OTs of random messages, with Alice as

receiver. Bob acts as receiver and uses the bits of r as his choice bits. In the

ith OT, Alice learns random strings mi,0 and mi,1, while Bob learns mi,r[i].

• Define the mapping F (x) = H
(⊕

imi,x[i]

)
, where H is a random oracle. One

can then view F as a PRF whose keys are the mi,b values (known to Alice).

Bob learns the output of F on r only. More precisely, he learns relaxed output

{mi,r[i]}i, for which all other outputs of F are pseudorandom.

In this description, we have treated r as a string of bits, and therefore use 1-out-

of-2 (random) OTs. However, when using the OT extension protocol of [KK13],

the cost of a 1-out-of-2 random OT is essentially the same as a 1-out-of-256 random

OT. Hence, PSSZ interpret r as strings of characters over {0, 1}8. The protocol

uses one instance of 1-out-of-256 ROT for each byte (not bit) of r.

Regardless of whether one uses 1-out-of-2 or 1-out-of-256 OT, this OPRF pro-

tocol has cost that scales with length of the input r, whereas ours has cost inde-

pendent of the input length. Our main improvement to PSSZ consists of replacing

their OPRF with ours. The rest of the protocol is largely unchanged.
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3.3.4.2 PSI from OPRF

We now describe how the PSSZ paradigm achieves PSI using an OPRF. This part

of the overall PSI protocol is nearly identical between our implementation and

that of [PSSZ15] (we include an additional small optimization). For concreteness,

we describe the parameters used in PSSZ when the parties have roughly the same

number n of items.

The protocol relies on Cuckoo hashing [PR04] with 3 hash functions, which

we briefly review now. To assign n items into b bins using Cuckoo hashing,

first choose random functions h1, h2, h3 : {0, 1}∗ → [b] and initialize empty bins

B[1, . . . , b]. To hash an item x, first check to see whether any of the bins B[h1(x)],

B[h2(x)], B[h3(x)] are empty. If so, then place x in one of the empty bins and

terminate. Otherwise, choose a random i ∈ {1, 2, 3}, evict the item currently in

B[hi(x)], replacing it with x, and then recursively try to insert the evicted item. If

this process does not terminate after a certain number of iterations, then the final

evicted element is placed in a special bin called the stash.

PSSZ use Cuckoo hashing for PSI in the following way. First, the parties choose

3 random hash functions h1, h2, h3 suitable for 3-way Cuckoo hashing. Suppose

Alice has a set X of inputs and Bob has a set Y , where |X| = |Y | = n. Bob maps

his items into 1.2n bins using Cuckoo hashing and a stash of size s. At this point

Bob has at most one item per bin and at most s items in his stash — he pads his

input with dummy items so that each bin contains exactly 1 item and the stash

contains exactly s items.
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The parties then run 1.2n+ s instances of an OPRF, where Bob plays the role

of receiver and uses each of his 1.2n+ s items as OPRF input. Let F (ki, ·) denote

the PRF evaluated in the ith OPRF instance. If Bob has mapped item y to bin

i via cuckoo hashing, then Bob learns F (ki, y); if Bob has mapped y to position j

in the stash, then Bob learns F (k1.2n+j, y).

On the other hand, Alice can compute F (ki, ·) for any i. So she computes sets

of candidate PRF outputs:

H = {F (khi(x), x) | x ∈ X and i ∈ {1, 2, 3}}

S = {F (k1.2n+j, x) | x ∈ X and j ∈ {1, . . . , s}}

She randomly permutes elements of H and elements of S and sends them to Bob.

Bob can identify the intersection of X and Y as follows. If Bob has an item y

mapped to the stash, he checks whether the associated OPRF output is present in

S. If Bob has an item y not mapped to the stash, he checks whether its associated

OPRF output is in H.

Intuitively, the protocol is secure against a semi-honest Bob by the PRF prop-

erty. For an item x ∈ X \ Y , the corresponding PRF outputs F (ki, y) are pseudo-

random. It is easy to see that security holds even if Bob learns relaxed PRF outputs

and the PRF achieves RK-PRF security, Definition 3.3.2 (i.e., Alice’s PRF outputs

are pseudorandom to an adversary who learns relaxed PRF outputs). Similarly, if

the PRF outputs are pseudorandom even under related keys, then it is safe for the

OPRF protocol to instantiate the PRF instances with related keys.
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The protocol is correct as long as the PRF does not introduce any further

collisions (i.e., F (ki, x) = F (ki′ , x
′) for x 6= x′). Below we discuss the parameters

required to prevent such collisions.

An Optimization In the protocol summary above, Bob must search for each

of his OPRF outputs, either in the set H or the set S. Furthermore, |H| = 3n

and |S| = sn. Even when using a reasonable data structure for these comparisons,

they have a non-trivial effect on the protocol’s running time. We now describe an

optimization that reduces this cost (by approximately 10% in our implementation).

The full protocol is described in Figure 3.5.

Our modification works as follows. First, Bob keeps track of a hash index

z ∈ {1, 2, 3} for each item y ∈ Y that is not mapped to the stash. For example, if

Bob’s Cuckoo hashing maps y to bin #h2(y), then Bob associates z = 2 with y. If

for example y is mapped to bin by two hash functions #h1(y) = #h2(y) then Bob

may choose either z = 1 or z = 2 arbitrarily.

Then in the first 1.2n OPRF instances, Bob uses input y‖z. For the OPRF

instances associated with the stash, he does not need to append the index z.

Summarizing, if Bob has mapped item to position j in the stash, then Bob learns

F (k1.2n+j, y). If he has not mapped y to the stash, then he learns F (khz(x), y‖z)

for exactly one z.
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Then Alice computes the following sets:

Hi = {F (khi(x), x‖i) | x ∈ X}, for i ∈ {1, 2, 3}

Sj = {F (k1.2n+j, x) | x ∈ X}, for j ∈ {1, . . . , s}

She randomly permutes the contents of each Hi and each Sj and sends them to

Bob. For each item y of Bob, if y is not mapped to the stash then Bob can whether

F (khz(y), y‖z) ∈ Hz, for the associated hash-index z. If his Cuckoo hashing maps

item y to position j in the stash, he can check whether F (k1.2n+j, y) ∈ Sj.

The reason for appending the hash-index z to the PRF input is as follows.

Suppose h1(x) = h2(x) = i, which is indeed can happen with noticeable probability,

since the output range of h1, h2 is small ([1.2n]). Without appending z, both H1

and H2 would contain the identical value F (ki, x). This would leak the fact that

a collision h1(x) = h2(x) occurred. Such an event is input-dependent so cannot be

simulated.6

With our optimization: (1) All of the calls to the PRF made by Alice (to

compute the Hi’s and Sj’s) invoke the PRF on distinct key-input pairs. This

ensures that the contents of these sets can be easily simulated; (2) Bob searches

for each of his PRF outputs within only one set (either an Hi or an Sj) of n items.

Contrast this with the approach described previously, where Bob must find each

OPRF output in either a set of size 3n or sn (depending on whether the item is

in the stash or not).

6The protocol and implementation of PSSZ do not account for such collisions among the
Cuckoo hash functions. Duplicate values will appear in H in such an event.
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Recall that the protocol is correct as long as there are no spurious collisions

among PRF outputs. Since there are at most n2 opportunities for a spurious

collision (Bob searches each time for a PRF output in a set of n items), we can

limit the overall probability of a spurious collision to 2−σ by using PRF outputs of

length σ + log2(n2).

3.3.4.3 Comparing OPRF Subprotocols

When comparing our protocol to that of PSSZ, the major difference is the choice

of OPRF subprotocols. Later in Section 4.7 we give an empirical comparison of

the protocols. For now, we derive an analytical comparison of the costs of the two

OPRF subprotocols, to give a better sense of our improvement.

We focus on the communication cost associated with the OT primitives. Com-

munication cost is an objective metric, and it often reflects the bottleneck in

practice (especially in these protocols where essentially all of the cryptographic

computations are precomputed). Although the computation costs of our proto-

cols are different (e.g., ours requires computing the pseudorandom code, which is

a cryptographic operation), communication cost is nonetheless a good proxy for

computation costs in OT extension protocols. The data that is communicated in

these protocols is a large matrix that must be transposed, and this transposition

is the primary contributor to the computational cost.

The main benefit of our protocol is that its cost does not scale with the size

of the items being compared. Each instance of OPRF consumes just one row of
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Parameters: Alice has input X; Bob has input Y , with |X| = |Y | = n. s is an
upper bound on the stash size for Cuckoo hashing.

1. Bob specifies random hash functions h1, h2, h3 : {0, 1}∗ → [1.2n] and tells
them to Alice.

2. Bob assigns his items Y into 1.2n bins using Cuckoo hashing. Let Bob
keep track of z(y) for each y so that: if z(y) = ⊥ then y is in the
stash; otherwise y is in bin hz(y)(y). Arrange the items in the stash in
an arbitrary order.

Bob selects OPRF inputs as follows: for i ∈ [1.2n], if bin #i is empty,
then set ri to a dummy value; otherwise if y is in bin #i then set ri =
y‖z(y). For i ∈ [s], if position i in the stash is y, then set ri = y;
otherwise set ri to a dummy value.

3. The parties invoke 1.2n+ s OPRF instances, with Bob the receiver with
inputs (r1, . . . , r1.2n+s). Alice receives (k1, . . . , k1.2n+s) and Bob receives
F (ki, ri) for all i.

4. Alice computes:

Hi = {F (khi(x), x‖i) | x ∈ X}, for i ∈ {1, 2, 3}
Sj = {F (k1.2n+j, x) | x ∈ X}, for j ∈ {1, . . . , s}

and sends a permutation of each set to Bob.

5. Bob initializes an empty set O and does the following for y ∈ Y : If
z(y) = ⊥ and y is at position j in the stash and F (k1.2n+j, y) ∈ Sj, then
Bob adds y to O. If z(y) 6= ⊥ and F (khz(y)(y), y‖z(y)) ∈ Hz(y) then Bob
adds y to O.

6. Bob sends O to Alice and both parties output O.

Figure 3.3: Our optimization to the PSSZ PSI protocol, written in terms of an
OPRF functionality.

the OT extension matrix. The width of this OT extension matrix is exactly the

length of the pseudorandom code (PRC). In Section 3.3.5.1 we describe how to
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compute an appropriate length of PRC. For the range of parameters we consider,

this parameter is 424–448 bits. Hence the OT-cost of one instance of our OPRF

protocol is 424–448 bits. The specific numbers are in Table 3.1.

The PSSZ OPRF protocol uses several instances of 1-out-of-256 ROT. With

security parameter 128, the cost of such a random OT is 256 bits using the OT

extension of [KK13].

The main optimization of [PSSZ15] allows for the OPRF subprotocols to be

performed on items of length `∗ = `− log n (n is the number of items in the overall

PSI protocol) rather than length `. Let `∗ denote this effective item length. Then

`∗/8 instances of 1-out-of-256 ROT are needed for one OPRF instance. The total

OT-cost of their OPRF protocol is therefore 256`∗/8 = 32`∗ bits.

Hence, we see that our protocol has lower communication cost whenever `∗ >

448/32 = 14. Among the different parameter settings reported in [PSSZ15], the

only configuration with `∗ < 14 is for PSI of n ≥ 220 items of length 32 bits. For

all other configurations, our PSI protocol has lower communication cost, with the

savings increasing as the items become longer. See Table 3.1.

Remark on pre-hashing long PSI inputs Our improvements to PSI are most

significant for PSI of long items. Yet, if the parties have items which are very long

strings (say, thousands of bits), they can agree on a random hash function, hash

their items locally, and perform PSI on the shorter hashes instead. The reader

may rightfully wonder whether this idea make our improvements irrelevant!

For this approach (hash-then-PSI) to work, we must ensure that the hashing
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OT cost
n ` `∗ PSSZ our BaRK-OPRF ratio

28 32 24 768 424 0.54
28 64 56 1792 424 0.24
28 128 120 3840 424 0.11
212 32 20 640 432 0.68
212 64 52 1664 432 0.26
212 128 116 3712 432 0.12
216 32 16 576 440 0.76
216 64 48 1536 440 0.29
216 128 112 3584 440 0.12
220 32 12 384 448 1.17
220 64 44 1408 448 0.32
220 128 108 3456 448 0.13
224 32 8 256 448 1.75
224 64 40 1280 448 0.35
224 128 104 3328 448 0.13

Table 3.1: Comparing the OT-cost of PSSZ-paradigm OPRF subprotocol and ours,
for various parameters. The entries in the table refer to the contribution (in bits)
to the size of the OT-extension matrices. ` is the item length (in bits), n is the
total number of items in the parties’ sets, and `∗ is the effective item length when
using the optimizations of [PSSZ15].

introduces no collisions among the parties’ items. If the parties have n items each,

and we wish to limit the probability of a collision to 2−σ, then we must choose

a hash function whose length is σ + 2 log n. When using the optimizations of

[PSSZ15], the effective item length can be reduced from σ + 2 log n to σ + log n

bits.

We see that pre-hashing the items cannot reduce their effective length below

σ bits, where σ is a statistical security parameter. Standard practice suggests

σ ≥ 40, and yet our protocol outperforms [PSSZ15] whenever the effective item
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length is at least 14 bits. Hence hash-then-PSI does not allow one to bypass our

improvement to [PSSZ15].

On a similar note, in our experimental results we report performance of the

protocols only for PSI inputs up to 128 bits long. For statistical security parameter

σ = 40, as long as the parties have at most 234 (17 billion) items, they can use

hash-then-PSI with a 128-bit hash.

3.3.5 Implementation & Performance

We implemented our PSI protocol and report on its performance in comparison

with the state-of-the-art PSI protocol of [PSSZ15]. Our complete implementation

is available on GitHub: https://github.com/osu-crypto/BaRK-OPRF.

In our implementation we used parameter settings consistent with PSSZ or

stricter, and ran their and our code on our system so as to obtain meaningful

comparisons. As do PSSZ, we use matrix transposition code from [ALSZ13] and

several other optimizations.

3.3.5.1 Choosing Suitable Parameters

In this section we discuss concrete parameters used in our implementation. We use

a computational security parameter of κ = 128 and a statistical security parameter

of σ = 40.

The other parameters are:

https://github.com/osu-crypto/BaRK-OPRF
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n s k v
28 12 424 56
212 6 432 64
216 4 440 72
220 3 448 80
224 2 448 88

Table 3.2: Parameters used in our implementation. n is the size of the parties’
input sets; s is the maximum stash size for Cuckoo hashing; k is the width of the
pseudorandom code (in bits); v is the length of OPRF output (in bits).

s: the maximum size of the stash for Cuckoo hashing, when hashing n items

into 1.2n using 3 hash functions.

k: length of the pseudorandom code (and hence the width of the OT extension

matrix) in the BaRK-OPRF protocol.

v: output length of the PRF realized by the BaRK-OPRF protocol.

A summary of our concrete parameter choices is given in Table 5.2. Below we

describe how these parameters were derived.

Hashing parameters Bob uses Cuckoo hashing with 3 hash functions to assign

his n items into 1.2n bins (and a stash). For the appropriate choice of the stash size

s, we use the numbers given in [PSSZ15], which limit the probability of hashing

failure to 2−40.

Size of pseudorandom code Our BaRK-OPRF protocol requires a pseudoran-

dom code achieving minimum distance κ = 128. In our protocol, Alice evaluates

the PRF on (3 + s)n values. In order to argue that these values can be collectively
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pseudorandom, so we require the underlying PRF to have m-RK-PRF security

(Definition 3.3.2) for m = (3 + s)n.

From Lemma 2, this means we must choose a pseudorandom code with param-

eters (d = κ, ε = σ+ logm). Using Lemma 1, we calculate the minimum length of

such a pseudorandom code; the results are column k in Table 5.2. We round up

to the nearest multiple of 8 so that protocol messages will always be whole bytes.

Length of OPRF outputs The length of OPRF output controls the probability

of a spurious collision in the PSI protocol. In Section 3.3.4.2 we argued that output

length of σ+log2(n2) is sufficient to bound the probability of any spurious collision

to 2−σ.

Using σ = 40, we compute the appropriate length in column v of Table 5.2.

We round up to the nearest multiple of 8 so that protocol messages will always be

whole bytes.

3.3.5.2 Environment settings

All of our experiments were implemented on a server with Intel(R) Xeon(R) CPU

E5-2699 v3 2.30GHz CPU and 256 GB RAM. We run both clients on the same

machine, but simulate a LAN and WAN connection using the Linux tc command.

In the WAN setting, the average network bandwidth and the average (round-trip)

latency are set to be 50 MB/s and 96 ms, respectively. In the LAN setting, the

network has 0.2ms latency. All of our experiments use a single thread for each
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party.

3.3.5.3 Implementation Details

In our BaRK-OPRF protocol, the offline phase is conducted to obtain an OT exten-

sion matrix of size (1.2n+s)×k by using the IKNP OT extension. Specifically, first

we use the Naor-Pinkas construction [NP01] to get 128 base-OTs, which are then

extended to a k×128 matrix by utilizing the pseudorandom generator. The trans-

pose of this matrix yields the k base OTs for the BaRK-OPRF extension protocol.

We extend to 1.2n+ s OPRF instances.

We hash all inputs of both client and server at the beginning of the online

phase. Following Lemma 1, we use a PRF with suitably long output as our pseu-

dorandom code. More concretely, the parties agree on an AES-128 key sk, which

is independent of their inputs, and then extend the output of AES via:

C(x) = AESsk(1‖x)‖AESsk(2‖x)‖AESsk(3‖x)‖AESsk(4‖x)

to obtain the desired k random output bits. Furthermore, to reduce the waiting

time at the server side, the client will constantly send a new packet encompassing

multiple code words to the server. Based on trail-and-error approach, the packet

size of 212×k bits is selected to minimize the waiting time. In Table 3.4, we report

the running time of our protocol for both offline and online phases in different

settings. For instance, in LAN environment, the online phase of our BaRK-OPRF
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protocol takes about 3.2s for n = 220.

To illustrate the efficacy of the BaRK-OPRF-PSI approach, we compared it with

a näıve hashing protocol and the PSSZ protocol. The näıve hashing protocol is

a widely-used insecure protocol [PSSZ15] where both parties use the same cryp-

tographic hash function to hash their elements, then one of the parties permutes

their hash value and sends the result to the other party, who will compute the

intersection by computing the match of the hash values. In the following, we con-

ducted several performance tests with the input sets of equal size n and for inputs

of length 32, 64, and 128 bits.

Note that the running time of our PSI protocol does not depend on the bit

length of the input. It can be explained as follows. First, the upper bound of

the length of the input is 128 bits. Second, the hash function will call a block of

128 bits to encrypt the input data, thus our protocol has the same computation

cost for all bit length of the input. In addition, the communication cost of our

BaRK-OPRF protocol depends only on the length of the pseudorandom code k and

the length v of the OPRF outputs, which are independent of the bit length `.

Similarly, the näıve hashing protocol does not depend on `. This was confirmed by

our simulation results for different bit lengths (e.g. 32 bits, 64 bits, and 128 bits).

Table 6.3 presents the running time of the näıve hashing protocol, PSSZ, and our

PSI protocol in both LAN and WAN environment.

As we can see in the tables, our protocol outperforms PSSZ in almost all the

case studies, especially for the long bit length of input ` and large values of the

input size n. For example, we consider the results in the LAN setting. For the
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input size of 220, our approach can improve 2.8 times and 3.6 times the performance

of PSSZ for the bit lengths of 64 bits and 128 bits, respectively. For the input size

of 224, the corresponding improvements are 2.3 times and 3.6 times. It is worth

mentioning that it takes about 1 minute to compute the intersection for the sets

of size n = 224. Similar observations can be inferred from Table 6.3 for the WAN

setting.

At the same time, for smaller bit lengths, the PSSZ protocol can be faster than

our PSI protocol. This is the case, for example, when the bit length is 32 bits

and n = 224 in LAN setting. Since the two protocols are very similar, differing

only in the choice of OPRF subprotocol, it would be relatively straightforward to

implement a hybrid that always chooses the best OPRF subprotocol based on n

and ` according to Table 3.1. However, in order to clarify the strengths/weaknesses

of the two protocols, we report the performance for our approach even when it is

worse.

Similar to the running time result, our communication cost is 2.9–3.3× faster

than Pinkas et al. for PSI of 128-bit strings and sufficiently large sets. Concretely,

for the input size of 220, our protocol can improve 3.2 times the performance of

PSSZ for the bit lengths 128 bits. Table 4.5 presents the communication (in MB)

of the näıve hashing protocol, PSSZ, and our BaRK-OPRF-PSI protocol.
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3.4 SpOT-Light: Lightweight Private Set Intersection from Sparse

OT Extension

We describe a novel approach for two-party private set intersection (PSI) with semi-

honest security. Compared to existing PSI protocols, ours has a more favorable

balance between communication and computation. Specifically, our protocol has

the lowest monetary cost of any known PSI protocol, when run over the Internet

using cloud-based computing services (taking into account current rates for CPU

+ data). On slow networks (e.g., 10Mbps) our protocol is actually the fastest.

Our novel underlying technique is a variant of oblivious transfer (OT) exten-

sion that we call sparse OT extension. Conceptually it can be thought of as

a communication-efficient multipoint oblivious PRF evaluation. Our sparse OT

technique relies heavily on manipulating high-degree polynomials over large finite

fields (i.e. elements whose representation requires hundreds of bits). We introduce

extensive algorithmic and engineering improvements for interpolation and multi-

point evaluation of such polynomials, which we believe will be of independent

interest.

Finally, we present an extensive empirical comparison of state-of-the-art PSI

protocols in several application scenarios and along several dimensions of measure-

ment: running time, communication, peak memory consumption, and — arguably

the most relevant metric for practice — monetary cost.
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3.4.1 Technical Overview of Our Results

We present a new PSI protocol paradigm that is secure against semi-honest adver-

saries under standard-model assumptions. We offer two variants of our protocol:

one is optimized for low communication and the other for fast computation. The

variant that is optimized for low communication is also secure against a malicious

sender in the (non-programmable) random oracle model.

Better Balance of Computation and Communication. Compared to DH-

PSI and RSA-based PSI [ACT11], both of our protocol variants have much faster

running time, since ours are based on OT extension (i.e., dominated by cheap

symmetric-key operations). The low-communication variant has smaller commu-

nication overhead than DH-PSI (even on a 256-bit elliptic curve) while the fast-

computation variant has about the same communication cost as DH-PSI.

Compared to [KKRT16], both of our protocol variants require much less com-

munication. Our protocols perform more computation in the form of finite field

operations, making our protocols slower over high-bandwidth networks. However,

the variant optimized for fast computation has a competitive running time and is

the fastest over low-bandwidth networks (e.g., 30Mbps and less).

Extensive Cost Comparison. In Section 3.4.5 we perform an extensive

benchmark of state-of-the-art PSI protocols for various set sizes and bandwidth

configurations. To the best of our knowledge, our analysis is the first to assess

PSI protocols in terms of their monetary costs. Our experiments show that in all

settings we considered, the fast variant of our protocol has the least monetary
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cost of all protocols — up to 40% less in some cases. A summary of the state of

the art (including this work) is depicted in Figure 3.4.

Sparse OT extension technique. Our main technique, which we call sparse

OT extension, is a novel twist on oblivious transfer (OT) extension. Roughly

speaking, the idea allows the receiver to obliviously pick up a chosen subset of k

out of N random secrets (where N may be exponential), with communication cost

proportional only to k.

The concept is similar to an oblivious PRF [FIPR05] on which the receiver

can evaluate k chosen points. Other PSI protocols like [PSSZ15, KKRT16] can

also be expressed as a construction of OPRF from OT extension. However, these

involve an OPRF that the receiver can evaluate on only a single value, resulting in

significantly more effort to build PSI. This qualitative difference in OPRF flavor

is the main source of our performance improvements.

New hashing techniques. It is common in PSI literature to assign items ran-

domly to bins, and then perform a PSI within each bin. For security reasons, it

is necessary to add dummy items to each bin. With existing techniques, dummy

items account for 20-80% of the protocol cost! Our speed-optimized protocol vari-

ant is the first to use a kind of 2-choice hashing [SEK03] that requires almost no

dummy items (e.g., 2.5%). This 2-choice hashing technique requires placing many

items per bin, while previous PSI techniques are only efficient with 1 item per bin

(due to their qualitatively different OPRF flavor). Hence, this hashing technique

does not immediately benefit existing PSI protocols.
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New polynomial interpolation techniques. Our communication-optimized

protocol variant requires interpolation and multi-point evaluation of a polynomial,

which turns out to be the main bottleneck for the following reasons: (1) The poly-

nomial is over a large field of� 2400 elements, since the polynomial encodes values

related to an underlying OT-extension protocol. (2) The number of interpolation

points depend on the parties’ set size, which could be in the millions. (3) The

best algorithms, which incur O(n log n) field operations, require a special set of

interpolation points, namely, the x-values should be the roots of unity of the field

or have a special algebraic structure. In contrast, in the context of our protocol

the interpolation points (the x-values) are the parties PSI input items, which are

arbitrary. The best algorithms with an arbitrary set of interpolation points incur

O(n log2 n) field operations [MB72].

We develop and demonstrate new techniques, called Slice & Stream and

Subproduct-Tree Reuse, to speed up the concrete efficiency of these tasks by up

to 2× for the special case in which the x and y-coordinates of the points are drawn

from the domains Dx and Dy where |Dx| � |Dy|. We believe those techniques

could have a general interest (even outside of the field of cryptography).
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3.4.2 Main Construction

3.4.2.1 A Conceptual Overview: PSI From a Multi-Point OPRF

A conceptually simple way to realize PSI is with an oblivious PRF (OPRF)

[FIPR05, HL08], which allows a sender Alice to learn a [pseudo]random function

F , and allows the receiver Bob to learn F (yi) for each chosen item in his set

{y1, . . . , yn}. If Alice has items {x1, . . . , xn}, she can send F (x1), . . . , F (xn) to Bob.

If the output of F is sufficiently long, then except with negligible probability we

have F (xi) = F (yj) if and only if xi = yj. Hence, Bob can deduce the intersection

of the two sets. The fact that F is pseudorandom ensures that for any item xi 6∈

{y1, . . . , yn}, the corresponding F (xi) looks random to Bob. Hence, no information

about such items is leaked to Bob.

Sparse OT Extension: Key Idea. We can interpret IKNP OT extension as

an OPRF as follows: Define the function F (i) = mi,0. Clearly the sender who

knows the key of F can compute F (i) for any i. The receiver can set his i’th choice
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bit in the OT to be ri = 0 if he chooses to learn F (i) (in this case he learns mi,0),

and use ri = 1 if he chooses not to learn F (i) (now he learns mi,1). To learn k

OPRF outputs, the receiver includes k 0s among his choice bits. The security of

OT extension implies that the receiver learns nothing about F (i) whenever ri = 1,

and the sender learns nothing about the ri bits.

This yields an OPRF of the form F : [N ]→ {0, 1}κ, where N is the number of

rows in the OT extension matrix. To be useful for PSI, N should be exponentially

large, making this simple approach extremly inefficient. The following two key

observations allow us to make the above approach efficient:

1. The parties require only random access to the large OT extension matrices.

In the PSI application, they only read the n � N rows indexed by their

PSI inputs. While IKNP defines the matrices T, U,Q by expanding base OT

values via a PRG, we instead expand with a PRF7.

2. Besides the base OTs, the only communication in IKNP is when Bob sends

the N × κ matrix P . In PSI, Bob only has knowledge of the n� N rows of

P indexed by his PSI input. Yet he must not let Alice identify the indices

of these rows. Our idea is to have Bob interpolate a degree-n polynomial P

where P (y) is the correct “target row” of the IKNP OT extension matrix,

for each y in his PSI input set. He then sends this polynomial P instead

of a huge matrix. This change reduces Bob’s communication from O(Nκ)

7In [HS13, Sec 3.2] they also use a PRF rather than PRG, but for a completely different
purpose: random access to the OT extension matrix was used to parallelize OT extension and
reduce memory footprint.
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to O(nκ), allowing N to be exponential.

The polynomial P is distributed as a random polynomial (hiding Bob’s in-

puts) since all rows of the IKNP matrix are pseudorandom from Alice’s point of

view. The more important concern is whether Bob learns too much. For example,

suppose Bob interpolates P on points {y1, . . . , yn}, but P happens to match the

correct “IKNP target value” on some other y∗ 6∈ {y1, . . . , yn} as well. This would

allow Bob to learn whether Alice holds y∗, violating privacy. We argue that: (1)

When the OT extension matrix is sufficiently wide, all relevant values P (y∗) are

sufficiently far in Hamming distance from their “target value”. (2) When this is

true, then Bob gets no information about Alice’s items not in the intersection.

Comparison to other PSI paradigms. Other state-of-the-art PSI protocols

(e.g., [KKRT16, PSZ14]) can also be interpreted as constructing an OPRF from

OT extension ([KKRT16] is explicitly described this way). These works construct

an OPRF that the receiver can evaluate on only one point, and use various hashing

tricks to reduce PSI to many independent instances of such an OPRF. In contrast,

we construct a single instance of an OPRF where the receiver can evaluate many

points. With such a multi-point OPRF it is trivial to achieve PSI, as illustrated

above.

3.4.2.2 Protocol Details, Correctness, Performance

The formal details of our protocol are given in Figure 3.5. We use n1 for the size of

Alice’s set and n2 for the size of Bob’s. We write InterpF({(x1, y1), . . . , (xd, yd)}) to
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denote the unique polynomial P over field F of degree less than d where P (xi) = yi.

In IKNP, the width of the matrices (and number of base OTs) is κ whereas the

width in our instantiation is ` > κ, where ` is determined by the security analysis.

Costs. The main computational cost is evaluating the degree-n2 polynomial for

Alice and interpolating the polynomial for Bob. In the case of n1 = n2 = n this

can be done with O(n log2 n) field operations (details in 3.4.4.1).

In the communication costs of the protocol, we exclude the cost of the base

OTs. These are fixed and don’t depend on the parties’ set sizes. Bob sends n2`

bits, while Alice sends n1(λ+ log(n1n2)) bits. Generally speaking, ` is much larger

than λ+ log(n1n2), which suggests that the party with more items should play the

role of Alice. Concrete values are discussed later in Section 3.4.5.

Correctness. The idea behind the protocol is that for every row which Bob

uses to interpolate the polynomial P (namely, a row corresponding to an input of

Bob), Alice sends a value which is equal to the corresponding hash value that Bob

computes in the last step of the protocol.

Namely, following the discussion of IKNP, we can see that

Q(x) = T (x)⊕ s ·
(
T (x)⊕ U(x)

)
= T (x)⊕ s ·R(x)

and therefore in Step 5 Alice computes:

Q(x)⊕ s · P (x) = T (x)⊕ s ·
(
P (x)⊕R(x)

)
(3.4)
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Input of Sender Alice: X = {x1, . . . , xn1} ⊆ [N ]
Input of Receiver Bob: Y = {y1, . . . , yn2} ⊆ [N ]
Parameters:

• The size ` := log2 |F| as defined in Table 3.6.

• A κ-Hamming CRF H : {0, 1}` → {0, 1}λ+log(n1n2)

• A PRF F : {0, 1}κ × [N ]→ {0, 1}

Protocol:

1. Alice chooses s← {0, 1}` uniformly at random.

2. Alice and Bob invoke ` instances of Random OT FκROT. In the i-th instance:

• Alice acts as receiver with input si.

• Bob acts as sender, and receives outputs ti,ui ∈ {0, 1}κ.
• Alice receives output qi.

3. For y ∈ Y , Bob computes R(y) = T (y)⊕ U(y), where:

T (y) := F (t1, y)‖F (t2, y)‖ · · · ‖F (t`, y)

U(y) := F (u1, y)‖F (u2, y)‖ · · · ‖F (u`, y)

4. Bob computes a polynomial P := InterpF({y,R(y)}y∈Y ), and sends its coef-
ficients to Alice

5. Alice defines Q as follows:

Q(x) := F (q1, x)‖F (q2, x)‖ · · · ‖F (q`, x)

and sends O =
{
H
(
Q(x)⊕ s · P (x)

)
| x ∈ X

}
randomly permuted to Bob

6. Bob outputs {y ∈ Y | H(T (y)) ∈ O}

Figure 3.5: Our SpOT-PSI protocol
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Now, consider the case that both parties have a common item x∗. Bob constructs

P so that P (x∗) = R(x∗). Alice computes H(Q(x∗) ⊕ s · P (x∗)) which from

Equation 3.4 gives Alice H(T (x∗)). Hence, Bob will include x∗ in his output.

In case that x 6∈ Y , P (x) and R(x) will be different in at least κ bits with

overwhelming probability (see the analysis below). Therefore, H
(
Q(x)⊕ s ·P (x)

)
is pseudorandom from Bob’s view, under the Hamming correlation robust assump-

tion. If σ is the output length of H, then the probability that this random value

equals H(T (y)) for some y ∈ Y is n22−σ. By a union bound over the items of

X \ Y , the overall probability of Bob including an incorrect value in the output

is at most n1n22−σ. Hence, choosing σ = λ + log2(n1n2) ensures that this error

probability is negligible (2−λ).

3.4.2.3 Properties of Polynomials

We first prove some simple lemmas about polynomials that are used in the security

proof of our PSI protocol.

Hiding Bob’s input. For security against a corrupt sender Alice, we simply

need Bob’s polynomial to hide his input:

Proposition 4. If z1, . . . , zd are uniformly distributed over F, then for all distinct

x1, . . . , xd, the output of InterpF({(x1, z1), . . . , (xd, zd)}) is uniformly distributed.

In particular, the distribution does not depend on the xi’s.

Proof. Viewing polynomial interpolation as a linear operation, we have the follow-
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ing, where p0, . . . , pd−1 are the coefficients of the polynomial.



p0

p1

...

pd−1


=



1 x1 x2
1 · · · xd−1

1

1 x2 x2
2 · · · xd−1

2

...
...

...
. . .

...

1 xd x2
d · · · xd−1

d



−1

×



z1

z2

...

zd


Since the polynomial is computed as a nonsingular matrix times a uniform vector,

the polynomial’s distribution is also uniform. �

Security for Alice. In our protocol, Bob generates a polynomial P such that

P (y) = R(y) for his input points y ∈ Y . The security of the protocol relies on

the property that for all other points x 6∈ Y , P (x) is far from R(x) in Hamming

distance (with very high probability).

Definition 3.4.1 (Bad polynomial). Let BadPolyRF (X, Y ) be the procedure defined

as follows:

1. P := InterpF({(y,R(y)) | y ∈ Y })

2. Output 1 iff ∃x ∈ X \ Y s.t. dH(P (x), R(x)) < κ

Proposition 5. The probability that a polynomial interpolated over points in

Y also passes “too close” to another point in X is bounded by n1

|F|
∑

i<κ

(
log2 |F|

i

)
.

Formally, for all X, Y with |X| = n1,

Pr[BadPolyRF (X, Y ) = 1] ≤ n1

|F|
∑
i<κ

(
log2 |F|

i

)
,
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n1:
Pr[BadPoly] 210 212 214 216 218 220 222 224

2−40 416 420 424 428 432 436 440 444
2−80 491 495 498 502 505 509 512 515

Figure 3.6: Field size log2 |F| for our protocol, with κ = 128.

where the probability is over choice of random function R : F→ F.

Proof. For a fixed element v ∈ F, the probability of a uniformly chosen element

u← F being closer than Hamming distance κ to v is
∑

i<κ

(
log2 |F|

i

)
/|F|. This is the

case when entering to the second step of the procedure in Definition 3.4.1, where

each P (x) is already fixed and R(x) is uniform in F. The claim follows by a union

bound over the (at most n1) items in X \ Y . �

On the communication complexity of the protocol. Let ` = log2 |F|. In

our protocol a small ` leads to a bad event where two terms are close in Hamming

distance. Since this bad event is a one-time event, it suffices to bound its proba-

bility by the statistical security parameter λ. Since the bad event involves a union

bound over n, the concrete analysis involves both λ and n.

However, we could also just compute ` assuming the worst case n = 2κ (where

κ is the computational security parameter), and we would get ` = poly(κ) and

a bad-event probability of poly(n)/2κ. For our specific protocol/analysis, ` =

4.3 · κ appears sufficient to achieve bad event probability n/2κ (robust to a wide

range of κ). As an analogy: in any OPRF-based PSI protocol, receiver learns

F (y1), F (y2), . . . and sender sends F (x1), F (x2), . . .. For correctness it suffices to
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truncate F to λ+ 2log(n) bits, but of course it is quite enough to let F have O(κ)

bits.

In summary, asymptotically O(n · κ) bits do suffice for correctness/security,

but so do O(n · `) bits, where ` is some function of λ, κ, n. The more fine-grained

analysis of ` leads to less concrete communication, and that is why our concrete

analysis displays a dependency of ` on n.

Hence, given a desired κ, n1, and Pr[BadPoly] one can solve for the smallest

compatible field size. A table of such field sizes is provided in Figure 3.6.

3.4.2.4 Semi-Honest Security

Theorem 6. The protocol in Figure 3.5 securely realizes the PSI functionality of

Figure 2.4 in a semi-honest setting, when F is a pseudo-random function, H is a

κ-Hamming correlation robust (Definition 2.7.1), and the parameter ` is chosen

according to the table in Figure 3.6.

Proof. Due to space limitation we only sketch here the simulators for the two cases

of corrupt Alice and corrupt Bob. The full security proof including (via hybrid

arguments) is defered to the the full version of our paper.

Corrupt Alice. The simulator observes Alice’s inputs to the FROT primitive

and gives random qi as OT outputs in Step 2. The only other message Alice

receives is the polynomial P in Step 4. Instead of P := InterpF({y,R(y)}y∈Y ), the

simulator sends a uniformly random polynomial to Alice.
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Briefly, this simulation is indistinguishable for the following reasons: R(y) is

pseudorandom from Alice’s view (by the security of the PRF which defines the con-

ceptual OT-extension matrices). Hence, the polynomial P is distributed uniformly

(from Proposition 4).

Corrupt Bob. The simulator for a corrupt Bob first obtains X ∩ Y from the

ideal PSI functionality. It simulates random outputs ti, qi from FROT. The only

other message received by Bob is the set O in Step 5. To simulate this message,

the simulator computes n′ = n1−|X∩Y | and uniformly samples values z1, . . . , zn′ .

It then simulates O = {H(T (x)) | x ∈ X ∩ Y } ∪ {z1, . . . , zn′}.

This simulation is indistinguishable because P (x) and R(x) will differ in at

least κ bits for every x ∈ X \ Y (Proposition 5), and as long as that is true, the

corresponding outputs of H will be pseudorandom.

3.4.2.5 Optimizations: Reducing Alice’s Communication

Recall that Alice’s communication consists of n1 OPRF outputs, each of length

λ + log(n1n2). Using a trick of Tamrakar et al. [TLP+17], this can be reduced

to roughly λ + log n1 bits per item. For λ = 40 and n1 = n2 = 220 this reduces

communication by 25%. This improvement is even more beneficial when n1 � n2,

since Alice’s communication (despite being less per item) dominates the protocol

overall.

For completeness, we describe the trick in the full version of our paper. It can

be viewed as a public lossless compression of Alice’s protocol message, and there-
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fore does not affect security. We also show another approach to reduce Alice’s

communication to exactly λ + log n1 bits per item, inspired by polynomial encod-

ings. However, that optimization is much slower in practice for only a marginal

reduction in communication.

3.4.2.6 Security against Malicious Sender

Our protocol is secure against a malicious sender if F is modeled as a non-

programmable random oracle. (In the full version of our paper, we show that

our protocol is insecure against a malicious receiver.)

Theorem 7. The protocol in Figure 3.5 securely realizes the PSI functionality

of Figure 2.4 against a malicious sender Alice, when F is modeled as a (non-

programmable) random oracle.

Proof Sketch. The simulator plays the role of honest receiver Bob and the ideal

FROT functionalities in steps 1 and 2, observing Alice’s FROT-input s and generating

random outputs {qi}i∈[`]. Throughout the protocol, the simulator also observes all

of Alice’s queries to the random oracle F . Without loss of generality, we can

assume that whenever Alice makes a query of the form F (qi, x) to the random

oracle, where qi is one of the FROT-outputs, it also queries F (qj , x) for all j ∈ [`].

The simulator observes Alice’s oracle queries and maintains a list

C = {x | Alice queried F on some F (qi, x)}.
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In step 4, the simulator sends a random polynomial P . In step 5, the simulator

receives a set O from the corrupt Alice and computes

X̃ = {x ∈ C | H(Q(x) + s · P (x)) ∈ O},

and finally sends X̃ to the PSI ideal functionality.

In the full version of our paper, we use a hybrid argument to formally prove

the indistinguishability of this simulator.

3.4.3 Fast Protocol Variant

The biggest performance bottleneck in our protocol is interpolating and evaluating

extremely high-degree (e.g., d = 220) polynomials over large (e.g., |F| > 264) finite

fields. To reduce this computational cost, we employ a technique of hashing the

items into bins, and performing PSI (involving lower-degree polynomials) within

each bin. This general technique is quite common in the PSI literature, and two

different types of hashing have been suggested in previous work. However, we

introduce a new hashing technique that (to the best of our knowledge) has not

been suggested previously for PSI. As we illustrate, previous protocols are not

able to immediately benefit from this new hashing technique — only our approach

enjoys the advantages of this new approach.
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3.4.3.1 Previous Hashing Techniques

In simple hashing, parties choose a random hash function h : {0, 1}∗ → [m]

and assign each item x to bin with index h(x). Since if Alice and Bob have the

same item they both map it to the same bin, then they can perform a separate

PSI within each bin. The load of each bin leaks information (i.e., it cannot be

simulated just given the intersection), and therefore the parties must pad each

bin up to a maximum size with dummy items. For example, with n items and

m = O(n/ log n) bins, the expected load of each bin is n/m = O(log n) and the

maximum load B is O(log n) with high probability. In practice, B may be 4 to 5

times higher than n/m, meaning that about 80% of the items are dummies.

In Cuckoo hashing (used in [PSZ14, KKRT16]), the parties choose two hash

function h1, h2 : {0, 1}∗ → [m]. The receiver Bob places his items into m bins so

that x is placed in either h1(x) or h2(x), and each bin contains at most one item.

Alice places each of her items x in both locations h1(x) and h2(x). As above, Bob

must pad each bin with dummy items to contain exactly one item (we can avoid

dummy items for Alice). The parties perform a PSI in each bin. Cuckoo hashing

leads to roughly 20% dummy items (this is for Cuckoo hashing with three hash

functions; Cuckoo hashing with two hash functions has even more dummy items),

not to mention extra protocol costs associated with the stash (a special bin for

items that cannot find a home in the Cuckoo hashing).
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3.4.3.2 Our High-Level Approach

An important feature of Cuckoo hashing is that it results in at most one item per

bin for Bob. This situation is the ideal fit for the underlying OPRF primitive of

[PSZ14, KKRT16], which allows the receiver (Bob in this case) to evaluate the

OPRF on a single value. With Cuckoo hashing, the PSI performed in each bin

can be achieved with such an OPRF.

But our sparse OT extension technique results in a multi-point OPRF primitive

that allows the receiver to evaluate on many values. Hence we have no need to

constrain the receiver Bob to have only one item per bin. We propose to use

a generalization of Cuckoo hashing called 2-choice hashing. Similar to Cuckoo

hashing, there are two hash functions h1 and h2, and item x can be placed in either

h1(x) or h2(x). Unlike Cuckoo hashing, there is no restriction on the number of

items per bin.

Cuckoo hashing is also often synonymous with an online hashing procedure,

where all the items are processed in a single pass. For the application to PSI,

though, all items are known upfront. We are free to make the best assignment of

items to bins, taking into account global information about all items. 8

These facts about 2-choice hashing indeed lead to much better performance (in

terms of dummy items). The following theorem of Czumaj, Riley, and Scheideler

[CRS03] shows that when the bins are allowed to contain significantly many items,

8This observation was concurrently and independently noted in [FNO18]; however, their focus
is exclusively on Cuckoo hashing, with at most one item per bin. They do not consider our
generalized 2-choice hashing.
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no dummy items are needed at all!

Theorem 8 ([CRS03]). Let h1, h2 : {0, 1}∗ → [m] be two random functions.

Suppose there are n items and m bins, where each item x can be placed in either

h1(x) or h2(x). Let L = dn/me. If n = Ω(m logm) then with high probability

there exists an optimal assignment, where each bin contains no more than L

items.

The proof uses an explicit randomized algorithm to generate an optimal assign-

ment. However, we found that the algorithm takes prohibitively long to converge.

Also, its analysis of error probability is not concrete. However, if we are willing to

settle for merely an “almost optimal” assignment of items to bins, the following

theorem of Sanders, Egner, and Korst [SEK03] suggests that one can be found

quite efficiently:

Theorem 9 ([SEK03]). Let n,m, h1, h2 be as above, with L = dn/me. There is

a deterministic algorithm running in time O(n log n) that assigns at most L + 1

items to each bin, with probability 1−O(1/m)L over the choice of h1, h2.

We propose the two-pass heuristic in Algorithm 1 for assigning items to bins.

This very simple, linear time algorithm seems to perform well. In our experience,

it never fails to find a near-optimal assignment with maximum load L + 1 =

dn/me + 1, for the parameters we use. In the rare event that it does fail, more

iterations of the final loop are likely to succeed.

With such a near-optimal assignment, we can see that for each of the n/m

bins there is only one dummy item. In practice, we set n/m to be the statistical
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security parameter λ so that an assignment exists with overwhelming probability.

Setting n/m = λ = 40 leads to the most dummy items one would ever consider

for our protocol, but still there are only 2.5% (= 1/40) dummy items.

Algorithm 1
FindAssignment(X,m, h1, h2)

1: for x ∈ X do

2: Assign item x to bin h1(x)

3: for x ∈ X do

4: Assign item x to whichever of

h1(x), h2(x) currently has fewest items

In the overall PSI protocol, Bob will

send a polynomial of degree dn/me+ 1

for each bin. For each item of Alice x ∈

X, she considers both locations h1(x)

and h2(x) and derives an OT-extension

/ OPRF output for both possibilities.

She then sends these 2 outputs for each

item.

3.4.3.3 Protocol Details

The details of the protocol are given in Figure 3.7. It mostly follows the outline

given above, with one important exception. Most of the time, Alice computes

two distinct mask values for each x ∈ X: one for h1(x) and one for h2(x). But

h1(x) = h2(x) is possible with probability 1/m. In that case, depending on how one

specifies this edge case, Alice will either send a repeated mask or send less masks

overall. Either way, this event leaks to Bob that Alice holds such an item satisfying

h1(x) = h2(x). This issue is common to all PSI protocols that use Cuckoo hashing

as well.

To address this issue, we let Bob append to each item y a bit b ∈ {1, 2}
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Input of Sender Alice: X = {x1, . . . , xn1} ⊆ [N ]
Input of Receiver Bob: Y = {y1, . . . , yn2} ⊆ [N ]
Parameters: (same as Figure 3.5, except ` is chosen to be compatible with
2n1 rather than n1 — see text for discussion)
Protocol: (steps 1–3 are the same as Figure 3.5)

4. Bob sets m = n2/λ, chooses random functions h1, h2 : [N ] →
[m], and sends them to Alice. Then Bob assigns its items using
FindAssignment(Y,m, h1, h2) (from Alg. 1) and adds dummy items so
that each bin has exactly dn2/me + 1 items. Write y‖b ∈ Bi to mean
that y was assigned to bin i by hash hb. For each bin i, Alice computes a
polynomial Pi := InterpF({y‖b, R(y‖b)}y‖b∈Bi), and sends its coefficients
to Alice.

5. Alice defines Q as in Figure 3.5 and defines the sets:

O1 =
{
H
(
Q(x‖1)⊕ s · Ph1(x)(x‖1)

) ∣∣∣ x ∈ X}
O2 =

{
H
(
Q(x‖2)⊕ s · Ph2(x)(x‖2)

) ∣∣∣ x ∈ X}
She permutes each one randomly and sends them to Bob.

6. Bob outputs {y | y‖b ∈
⋃
i Bi and H(T (y‖b)) ∈ Ob}

Figure 3.7: PSI protocol using 2-choice hashing optimization.

indicating which hash function hb was used to assign it to this bin. If h1(y) = h2(y)

we just choose b arbitrarily. Then the OT extension & polynomials are done with

respect to these “extended” values. Now in the case of h1(y) = h2(y), Bob will

only learn the OT-extension output for one variant y‖b, but Alice (if she has such

an item) will still be able to compute two distinct OT-extension outputs for the

two variants.

Theorem 10. The protocol in Figure 3.7 securely realizes the PSI functionality
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of Figure 2.4 in a semi-honest setting, with F,H as in Theorem 6 and ` according

to the column indexed by 2n1 in Table Figure 3.6.

The semi-honest security of the modified protocol follows with a very similar

proof as the original protocol, therefore we omit it for the sake of space. Unlike the

original protocol, this new one is not secure against malicious adversaries (details

are given in the full version of our paper).

3.4.3.4 Efficiency.

Theorem 9 suggests that a near-optimal assignment of items to bins exists with

probability at least 1− 2−n2/m.

Hence, we must have n2/m ≥ λ, the statistical security parameter, to en-

sure that Bob’s hashing step succeeds with overwhelming probability. Setting

m = n2/λ, the cost of all interpolations is now m ·O(λ log2 λ) = O(n2 log2 λ) field

operations if using the asymptotically efficient algorithm, or m · O(λ2) = O(n2λ)

using the simpler quadratic interpolation algorithm (which is indeed faster in prac-

tice for such small polynomials). In either case, this is a significant improvement

over O(n2 log2 n2) of the basic protocol (not to mention that distinct bins allow

for easy parallelization). The cost of Alice’s polynomial evaluation is similarly

improved.

No matter what m we choose (assuming n2/m is an integer), there will always

be exactly m dummy items for Bob. The percentage of dummy items is m/n2, so

Alice’s communication will increase by a multiplicative factor of (1 + m/n2). We
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suggest m = n2/λ, so Alice’s communication increases by a (1 + 1/λ) factor. As

mentioned above, for λ = 40, this increase is only 2.5%.

Recall from Section 3.4.2.3 that the parameter ` (width of OT extension matrix)

depends on the number of rows of the OT extension matrix that Alice accesses.

With this new optimization, she accesses twice as many rows (rows x‖1 and x‖2

for every x ∈ X). This leads to a slight increase in `. For the concrete parameters

we consider (see Figure 3.6), ` must increase by only 2 bits.

3.4.4 Optimizations for High-Degree Polynomials

Despite using fast polynomial algorithms, having one party (the interpolating

party) interpolating the huge-degree polynomial leads to a long idle time by the

other party (evaluating party), which implies a serious computational bottleneck.

In this section we show that in case that the x and y coordinates of the inter-

polation points are drawn from the domains Dx and Dy, respectively, such that

Dx � Dy ,the idle time can be significantly shrinked. To this end, we developed

new techniques, namely, slice & stream and sub-product tree reuse that allow a sig-

nificant reduction of the overall time of the protocol. The former technique means

that we “slice” the interpolation points into several parts, then we can interpo-

lated each part over a smaller field and hence faster; when a slice is ready it is sent

immediately to the other party for evaluation (i.e. streaming of polynomials). The

latter technique is based on our observation that one sub-algorithm that constructs

a sub-product tree (which is used both in interpolation and evaluation) depends
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only on the x-values of the interpolation points. Since all polynomial slices use the

same x-values and differ only on their y-values we can reuse the same sub-product

tree for all slices! We believe our techniques are valuable for other applications that

require an implementation of high-degree polynomial algorithms over large fields.

As demonstrated in Section 3.4.4.2, our techniques reduce the overall interpolation

and evaluation time by up to 60%.

In Section 3.4.4.1 we give an overview on known polynomial algorithms and in

Section 3.4.4.2 we introduce our techniques in detail.

3.4.4.1 Background: Interpolation and Multi-Point Evaluation

Trivial implementations of polynomial interpolation and multi-point evaluation of

arbitrary points adopt the O(n2) algorithms as they are sufficient for the typical

use cases of low-degree polynomials. However, in our case the degree is in the

millions, so the O(n2) algorithms are completely impractical. Faster algorithms,

by Moenck and Borodin from 1972 [MB72], achieve computational complexity of

O(n log2 n). In the following we present a high level overview on the algorithms,

while a detailed description is given in the full version of our paper.

Let X = {x1, . . . , xn} ⊂ {0, 1}α and Y = {y1, . . . , yn} ⊂ {0, 1}β.

• Given X and Y , the problem of polynomial interpolation is to find the unique

(n− 1)-degree polynomial P that passes through the points {(xi, yi)}i∈[n].

• Given X and an (n− 1)-degree polynomial Q, the problem of multi-point eval-

uation is to compute Q(X) = {Q(xi)}i∈[n].
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Algorithms for both problems follow the divide-and-conquer approach such that

in every iteration the problem is reduced to two half-size problems. Combining

the solutions of the half-size problems to a solution of the full-size problem has a

computational complexity of O(n log n). Formally, let T (n) be the time to solve

the interpolation and multi-point evaluation problems for |X| = |Y | = n, then

the recurrence relation is: T (n) = 2 · T
(
n
2

)
+ O(n log n) = O(n log2 n) where the

second equality follows from the Master theorem [CLRS09, Ch. 4].

The evaluation and interpolation algorithms are separated to two and four

sub-procedures, respectively, as follows.

Evaluation. Algorithm MultipointEvaluate(Q,X) invokes M ←

BuildTree(X) and outputs Y ← Evaluate(Q,M).

• BuildTree(X) constructs and outputs a binary tree of polynomials, denoted

M . Its leaves are the 1-degree polynomials {(x− a)}a∈X and each node is the

multiplication of its two children. Thus, if the degrees of the childs are d1 and

d2 then the node’s degree is d1 · d2. If n is a power of 2 then the degree of M ’s

root is n.

• Evaluate(Q,M) evaluates the polynomial Q on X, note that X is implicitly

“encoded” within M . The idea is that for every node m ∈ M (recall that m

is a polynomial), if (x− a) divides m then Q(a) = R(a) where R = Q mod m

(i.e. it is the remainder of the division of Q by m). To obtain Q(a) we replace

each node m with (Parent(m) mod m) and finally output the result on that
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leaf. The remainder is computed in O(n log n) arithmetic operations in the

underlying field.

Interpolation. Algorithm Interpolate(X, Y ) invokes M ← BuildTree(X)

as described above. Let M0 be M ’s root, it computes M0’s deriva-

tive by M ′
0 ← Derivative(M0) and then evaluates M ′

0 over X

by A ← MultipointEvaluate(M ′
0, X). Finally it invokes P ←

InternalInterpolate(M,A) and outputs P . The purpose of the sub-

algorithms is to enable the division of a n-size problem to two n
2
-size prob-

lems. Note that within MultipointEvaluate there is a construction of the

same sub-product tree as in BuildTree, therefore we can skip this and con-

struct M only once. The time of the algorithm is the sum of the times

of these four sub-algorithms, TInterpolate(n) = TBuildTree(n) + TDerivative(n) +

TMultipointEvaluate(n) +TInternalInterpolate(n) = O(n log2 n) +O(n) +O(n log2 n) +

O(n log2 n) = O(n log2 n).

3.4.4.2 Polynomial Slicing and Streaming

Let x1, . . . , xn ∈ {0, 1}α and y1, . . . , yn ∈ {0, 1}β (where β > α) then we interpolate

the polynomial P using points {(xi, yi)}i∈[n] over a field F where |F| = 2β. For the

sake of exposition suppose that α divides β and let ρ = β
α

. For each i we define yji

for j ∈ [ρ] such that |yji | = α and yi = y1
i || . . . ||y

ρ
i . We can “cut” P into ρ slices

P1, . . . , Pρ such that for every xi it holds that P (xi) = P1(xi)|| . . . ||Pρ(xi). This is
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done by interpolating the polynomial Pj (for j ∈ [ρ]) using the points {(xi, yji )}i∈[n].

This requires a smaller field, i.e. we need that |F| = 2α, hence Pj is produced in a

shorter time.

To demonstrate the above let us fix some parameters. Assume that the parties’

only task is to interpolate P using n = 220 points and then perform a multi-point

evaluation of n points; also assume an ideal network with zero latency. Consider

first performing this task directly to a “single-slice” polynomial over a field of size

2β where β = 512. Interpolation and multi-point evaluation take 233 + 167 = 400

seconds (detailed measurements are given in the full version.

We ignore milliseconds here and in the following). Utilizing the slicing tech-

nique with α = 128 we have ρ = β
α

= 512
128

= 4 slices. This means that the

interpolating party produces the sliced polynomials one after the other and sends

them immediately (i.e. without waiting until for all polynomials to be ready) and

the evaluating party evaluates them one by one upon reception. This leads to

67 · 4 + 49 = 317 seconds which is 81% of the trivial implementation.

Further utilizing the slicing technique. As shown above, the slicing and

streaming technique leads to an improvement over the trivial implementation. The

following observation significantly pushes forward the slicing technique: Building

the polynomials tree M in the evaluation process depends only on x1, . . . , xn,

which means this can be performed only once for all slices. Similarly, in the

interpolation algorithm the tasks of building the polynomials tree, calculating the

derivative and evaluating it depends only on x1, . . . , xn and can be performed once
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Figure 3.8: Illustrating the slicing technique. The lines between •’s represent
the interpolating party and the lines between the 5’s represent the evaluating
party. Solid (blue) lines illustrate the trivial implementation (overall 400 seconds),
dashed (black) lines illustrate the initial slicing technique (overall 317 seconds) and
dotted-dashed (red) lines illustrate the final optimization (overall 189 seconds).

and for all slices. Thus, taking β = 512, α = 128 and n = 220 the one-time tasks

of building the sub-product tree, calculating the derivative and evaluating it takes

12889+86+33144 = 46119 ms. The one-time task of the evaluating party (building

the sub-product tree) takes 13959 ms and can surely be done simultaneously. Then

the interpolating party produces 4 polynomial slices, each takes 19471 ms, and

the evaluating party evaluates them upon reception. Since the evaluation task

is more expensive than the interpolating task (the part being performed for each

slice) the total running time is 46119 + 4 · 35835 = 189459 ms. This is less than

60% of the initial slicing technique and 48% of the trivial implementation. Both

of our optimizations, together with the trivial implementation are illustrated in

Figure 3.8.

Communication. Observe that this technique does not increase the communi-

cation complexity of the protocol. This is due to the fact that instead of sending
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2n coefficients of P , each of size β, we send 2n coefficients of Pj, each of size α, for

every j. This leads to exactly same communication size of 2n · α · ρ = 2n · β.

3.4.5 Implementation and Performance Comparison

Recall that we have presented two variants of our protocol. In this section we will

refer to them as:

spot-low: the communication-optimized variant presented in Figure 3.5, in which

Bob sends one large polynomial and Alice sends one OPRF output per

item.

spot-fast: the speed-optimized variant presented in Figure 3.7, in which Bob uses

2-choice hashing and Alice sends two OPRF outputs per item.

We also compare our protocols to the following:

KKRT: the leading OT-extension-based protocol from [KKRT16].

DH-PSI: Diffie-Hellman-based PSI, instantiated with either Koblitz-283 (K283)

or Curve25519 (25519) elliptic curves.

Our focus in this section is on the case where n1 = n2, i.e., the parties have sets

of equal size. We report some findings also for the case of unequal set sizes in the

full version of our paper. Our complete implementation is available on GitHub:

https://github.com/osu-crypto/SpOT-PSI.

https://github.com/osu-crypto/SpOT-PSI
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3.4.5.1 Theoretical Analysis of Communication

We first compare the theoretical communication complexity of protocols (Ta-

ble 3.6). This measures how much communication the protocols require on an

idealized network where we do not care about protocol metadata, realistic encod-

ings, byte alignment, etc. In practice, data is split up into multiples of bytes

(or CPU words), and different data is encoded with headers, etc. — empirical

measurements of such real-world costs are given later in Table 3.7.

For set sizes in the range 216 to 224, our spot-low variant has the least commu-

nication of any of the protocols we consider: ∼15% less than DH-PSI and ∼50%

less than KKRT. Our spot-fast variant uses up to ∼5% more communication than

DH-PSI but 35-43% less than KKRT.

We note that KKRT uses a parameter ` similar to ours (corresponding to the

width of the OT extension matrix), but their parameter is always slightly larger.

This is because (as in our protocol) ` depends on how many rows of the OT matrix

the sender accesses, which is more than in ours ((3 + s)n1 in KKRT).

The communication optimization (described in Section 3.4.2.5) can indeed be

applied to other protocols as well (DH-PSI, KKRT, and spot-fast). For example,

when n = 220 it saves 16 bits per item (only 2.6MB in total), so the effect does

not have significant impact on any comparisons. However, the optimization would

be much more expensive or cumbersome to implement since it requires all OPRF

outputs to be computed and sorted, but without this optimization they can be

sent as they are computed.
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3.4.5.2 Experimental Comparison

We now present a comparison based on implementations of all protocols.

Implementation Details. We used the implementation of KKRT provided by

the authors. We implemented DH-PSI using the Miracl library implementations

of Koblitz K-283 and Curve25519 elliptic curves.

For our own protocols, we implemented the polynomial interpolation and eval-

uation algorithms using a field of prime order p, where p is the smallest prime

greater than 2` and ` is bit length of the output of our sparse-OT extension (the

` in Figure 3.6). We discuss this choice in the full version of our paper. The

polynomial operations are implemented using the NTL library v10.4.0.

Note that both KKRT and our protocols require the same underlying primi-

tives: a Hamming correlation-robust function H, a pseudorandom funtion F , and

base OTs for OT extension. We instantiated these primitives exactly as KKRT:

both H and F instantiated using AES, and base OTs instantiated using Naor-

Pinkas [NP01]. We use the implementation of base OTs from the libOTe library9.

All protocols use a computational security κ = 128 bits and a statistical security

λ = 40 bits.

Experimental setup: AWS benchmark. We performed a series of bench-

marks on the Amazon web services (AWS) EC2 cloud computing service. We

use the M5.large machine class, which is classified as the current state-of-the-art

9https://github.com/osu-crypto/libOTe

https://github.com/osu-crypto/libOTe
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t
1 2 3 4 5 6

Virginia 1 9.6 0.17 1.08 0.063 0.068 0.084

Oregon 2 0.18 0.053 0.072 0.058

Ohio 3 0.058 0.069 0.078

Mumbai 4 0.050 0.034

Sidney 5 0.031

Sao-paolo 6

Figure 3.9: Gbps between AWS sites.

“general purpose” instance. These machines have 2 vCPU (2.5GHz Intel Xeon)

and 8 GB RAM. We considered other kinds of instances, but ultimately rejected

them. The cheaper T2 class (“burstable”) was found to be too unstable for our

workloads, while the more expensive C5 class (“compute-optimized”) resulted in

more monetary cost than M5 in all cases.

Based on the geographic region of the two parties, we can realize different

network speeds, as illustrated in Table 3.9. The network speeds given in the table

were measured using the iperf3 command.10 This collection of AWS sites was

chosen to give a large range of bandwidth performance.

Experimental setup: local benchmark. The AWS benchmarks use a real

network connection which is sometimes unpredictable. For a highly controlled

experimental network, we benchmarked protocols on a single machine: Intel Xeon

2.30 GHz, 256GB RAM, 36 physical cores (note that all implementations are single-

threaded unless otherwise indicated). We simulated a network connection using

the Linux tc command, communicating via localhost network. We simulated a

10See https://iperf.fr/iperf-download.php.

https://iperf.fr/iperf-download.php
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LAN setting with 10 Gbps network bandwidth and 0.2ms round-trip latency, and

various WAN settings with 100 Mpbs, 10 Mpbs, 1 Mpbs and 80ms round-trip

latency.

AWS Pricing Scheme. Part of our motivation for evaluating protocols on AWS

is to report and compare their real-world monetary costs. Hence we describe now

the pricing scheme for AWS at the time of our comparison.11 Costs are associated

with both running time and data transfer, and both depend on the data center

(geographic location) at which the instance runs.

The running-time cost per hour (in USD) for our instance type M5.large is 0.096

(USA), 0.101 (Mumbai), 0.12 (Sydney), 0.153 (Sao Paolo).

The data transfer cost differ depending on whether both endpoints are within

AWS, and the data-center of the endpoints. We consider two network settings:

• In a business-to-business (B2B) setting between two fixed organizations

that want to regularly perform PSI on their dynamic data, both endpoints

may be within the AWS network.

• In an internet setting where one organization wishes to regularly perform

PSI with a dynamically changing partner, only one party may be within the

AWS network.

These considerations have the following effect on the cost of data transfer on AWS:

• Inbound data transfer from the Internet to EC2 is free.

11The pricing can be found in https://aws.amazon.com/ec2/pricing/on-demand/.

https://aws.amazon.com/ec2/pricing/on-demand/
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Figure 3.10: Monetary cost (in USD) per 1000 runs of PSI on 216 (left) and 220

(right) items, in the B2B network scenario.

• Outbound data transfer from EC2 to the Internet incurs the highest cost.

Rates in USD per 1GB are 0.09 (USA), 0.1093 (Mumbai), 0.114 (Sydney),

0.25 (Sao Paolo).

• Outbound data transfer between two instance at the same site cost 0.01

USD/GB per direction.

• Outbound data transfer to another AWS site costs (in USD/GB): 0.02 (USA),

0.086 (Mumbai), 0.14 (Sydney) and 0.16 (Sao Paolo)

• Additional cost is for using a public IP address, which is indeed required for

the scenarios we consider; this costs 0.01 USD/GB for all sites.

We compute the total monetary cost of a protocol execution as follows. Let T be

the runtime in hours of the protocol; let X1 and X2 be the outbound communication

of the first and second parties, resp.; let CT1,CT2 be the uptime rate of the machines

run by the parties; and let CX1,CX2 be the outbound data transfer rates for the
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Figure 3.11: Monetary cost (in USD) per 1000 runs of PSI on 216 (left) and 220

(right) items, in the ‘Internet’ network scenario.

1 9.6 Gb/s Virginia-Virginia
2 1.08 Gb/s Virginia-Ohio
3 0.17 Gb/s Virginia-Oregon
4 0.031 Gb/s Sidney-Sao Paolo
5 0.01 Gb/s Virginia-Virginia

(controlled b/w)

Figure 3.12: Evaluated run times over AWS EC2 with descending bandwidth.
Solid and dotted lines are for PSI over 216 and 220 items respectively. The 1-5
numbers at the x-axis of the figure represent the configurations 1-5 described in
the table to the right.

machines/regions of the parties. The cost in USD is then:

TotalCost = T · (CT1 + CT2) + X1 · CX1 + X2 · CX2 + 0.01 · (X1 + X2)
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3.4.5.3 Experimental Results

AWS monetary cost. To limit the number of protocol executions performed

on AWS, we focus on set sizes of 216 and 220 as they are representative of realistic

set sizes for aformentioned applications of PSI.

The monetary cost of PSI protocols is presented in Figures 3.10 and 3.11. We

see that our spot-fast protocol variant is the cheapest protocol in all of the settings

we consider. In the B2B scenarios it is 4%-35% for PSI of 216 items and 10%-40%

cheaper for PSI of 220 items, compared to the second cheapest protocol (KKRT).

In the ‘Internet’ scenarios it is 13%-38% cheaper for PSI of 216 items and 30%-40%

cheaper for 220 items. The numerical costs can be found in the full version of our

paper.

Break-even point with KKRT. Our protocol has less communication than the

faster KKRT protocol. As the network becomes slower, the protocol becomes more

network-bound and our advantage in communication eventually leads to faster

performance than KKRT. We compared the running time of the PSI protocols on

networks of different speeds, in order to identify the “break-even point” where our

protocol (spot-fast) becomes faster than KKRT.

From the running times in Figure 3.12, we find that the spot-fast variant over-

takes KKRT as the fastest PSI protocol when network bandwidth drops below the

10–30 Mbps range. The concrete times are detailed in the full version of this paper.



96

Detailed, controlled local benchmarks. A more detailed benchmark for set

sizes 212− 224 and controlled network configurations is given in Table 3.7. We also

considered the effect of multi-threading on protocol performance, with T ∈ {1, 4}

threads. The implementation of KKRT does not support multi-threading.

The communication of our protocol is approximately 2× smaller than that of

[KKRT16]. For example, computing the intersection of sets of size n = 220, spot-

fast and spot-low variants require 76.43 MB and 63.18 MB respectively, whereas

[KKRT16] requires 127 MB of communication, (a 1.7− 2.0× improvement).

In a single-threaded LAN setting, spot-fast variant is several times slower than

KKRT, requiring 25.62 seconds with n = 220. Applying the same parameters to

[KKRT16] results in a running time of 4.1 seconds. The running time of spot-fast

variant is improved significantly by multi-threading, improving to 7.61 seconds

when utilizing 4 threads.

In the WAN setting, spot-fast becomes the fastest protocol on slow (10Mbps and

1Mbps) network, due to its lower communication cost. For example, in the 10Mpbs

network, for sets of size n = 220, spot-fast takes 66.2 seconds, while [KKRT16]

requires 120.13 seconds, a 1.8× improvement.

Both of our protocols outperformed DH-PSI. For example, spot-low requires 63

MB while DH-PSI (Curve25519) requires 76 MB, a ∼ 12% improvement.

In terms of computation, even our slower spot-low variant is based on

symmetric-key operations, and is significantly faster than DH-PSI. We also exam-

ined the effect of multi-threading. Similar to DH-PSI, spot-fast variant is extremely

amenable to parallelization. Concretely, we parallelize our algorithm at the level
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of bins. Both DH-PSI and spot-fast yield a similar speedup of about 3.5× by using

4 threads.
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set size n
Setting Protocol Bit length ` 28 212 216 220 224

LAN

(insecure) näıve hashing {32, 64, 128} 1 6 75 759 13,529

PSSZ
32 306 380 770 4,438 42,221
64 306 442 1,236 10,501 137,383
128 307 443 1,352 13,814 213,597

BaRK-OPRF-PSI {32, 64, 128} 192 211 387 3,780 58,567

WAN

(insecure) näıve hashing {32, 64, 128} 97 101 180 1,422 22,990

PSSZ
32 609 701 1,425 8,222 81,234
64 624 742 2,142 18,398 248,919
128 624 746 2,198 23,546 381,913

BaRK-OPRF-PSI {32, 64, 128} 556 585 1,259 7,455 106,828

Table 3.3: Running time in ms for PSI protocols with n elements per party

set size n
Setting Phase 28 212 216 220 224

LAN
Offline 171 171 216 601 7,615
Online 21 40 171 3,179 50,952

WAN
Offline 291 313 316 758 7,482
Online 265 272 943 6,697 99,346

Table 3.4: Running time of our BaRK-OPRF protocol in ms in offline and online
phases

set size n
Protocol Bit length ` 28 212 216 220 224 Asymptotic [bit]

näıve hashing {32, 64, 128} 0.01 0.03 0.56 10.00 176.00 nv

PSSZ
32 0.06 0.77 9.18 142.80 1,574.40

64 0.09 1.37 18.78 296.40 4,032.00 2κ(1.2n+ s)dmin(v′,`)−log(n)
8 e+ (3 + s)nv′

128 0.10 1.52 23.58 411.60 6,489.60
BaRK-OPRF-PSI {32, 64, 128} 0.04 0.53 8.06 127.20 1,955.20 k(1.2n+ s) + (3 + s)nv

Table 3.5: Communication in MB for PSI protocols with n elements per party.
Parameters k, s, and v refer to those in Table 5.2 / Section 3.3.5.1. PSSZ requires
slightly long OPRF outputs: v′ = σ + log(3n2). Communication costs for PSSZ
and for our protocol ignore the fixed cost of base OTs for OT extension.



99

Protocol Communication
n = n1 = n2

216 220 224

KKRT (3 + s)(λ+ log(n1n2))n1 + 1.2`n2 1042n 1018n 978n
DH-PSI φn1 + (φ+ λ+ log(n1n2))n2 584n 592n 600n
spot-low 1.02(λ+ log2(n2) + 2)n1 + `n2 488n 500n 512n
spot-fast 2(λ+ log(n1n2))n1 + `(1 + 1/λ)n2 583n 609n 634n

Table 3.6: Theoretical communication costs of PSI protocols (in bits), calculated using
computational security κ = 128 and statistical security λ = 40. Ignores cost of base OTs
(in our protocol and KKRT) which are independent of input size. φ is the size of elliptic
curve group elements (256 is used here). ` is width of OT extension matrix (depends on
n1 and protocol).

Params. Protocol Comm. Total time (seconds)

n1 n2 (MB)
10 Gbps 100 Mbps 10 Mbps 1 Mbps

T = 1 4 1 4 1 4 1 4

224 224

DH-PSI (K-283) — — — — — — — — —
DH-PSI (25519) — — — — — — — — —
KKRT 1955.2 63.3 — 261.9 — 1852.1 — — —
spot-low — — — — — — — — —
spot-fast 1254.5 440.1 146.1 474.6 173.3 1071.8 1062.8 — —

220 220

DH-PSI (K-283) 84.0 1141.8 338.5 1152.5 336.9 1158.2 334.2 1472.4 854.3
DH-PSI (25519) 76.1 2110.6 632.8 2290.5 634.5 2325.7 673.0 2497.8 1014.0
KKRT 127 4.61 — 17.47 — 120.1 — 1154.5 —
spot-low 63.1 270.3 179.2 273.4 185.3 299.6 206.67 687.2 311.16
spot-fast 76.4 25.6 7.6 27.8 10.53 66.2 66.0 646.3 645.3

216 216

DH-PSI (K-283) 5.2 69.8 20.20 70.77 21.93 71.10 22.8 80.1 44.4
DH-PSI (25519) 4.7 136.9 39.4 140.4 40.1 142.8 40.8 151.3 48.2
KKRT 8.06 0.43 — 1.99 — 8.4 — 74.5 —
spot-low 3.9 12.8 8.8 13.7 9.8 15.1 10.9 41.1 39.1
spot-fast 4.71 1.90 0.77 2.91 2.02 5.46 5.36 40.19 40.08

212 212

DH-PSI (K-283) 0.32 4.59 1.87 4.65 1.67 4.82 1.56 5.18 2.75
DH-PSI (25519) 0.29 8.72 2.58 8.90 27.5 9.10 2.80 9.59 2.98
KKRT 0.53 0.22 — 0.87 — 1.24 — 5.7 —
spot-low 0.25 0.87 0.61 1.4 1.2 1.4 13.23 3.17 3.0
spot-fast 0.3 0.4 0.21 1.14 0.99 1.16 1.01 3.58 3.51

Table 3.7: Total communication cost in MB and running time in seconds comparing
our protocol to [KKRT16] and HD-PSI, with T ∈ {1, 4} threads; each item has
128-bit length. 10Gbps network assumes 0.2ms RTT, and others use 80ms RTT.
Cells with ”—” denote setting not supported or program out of memory.
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Chapter 4: Multi-party PSI

Practical Multi-party Private Set Intersection from Symmetric-Key Techniques by

Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, Ni Trieu, in

CCS [KMP+17].

We present a new paradigm for multi-party private set intersection (PSI) that

allows n parties to compute the intersection of their datasets without revealing any

additional information. We explore a variety of instantiations of this paradigm.

Our protocols avoid computationally expensive public-key operations and are se-

cure in the presence of any number of semi-honest participants (i.e., without an

honest majority).

We demonstrate the practicality of our protocols with an implementation. To

the best of our knowledge, this is the first implementation of a multi-party PSI

protocol. For 5 parties with data-sets of 220 items each, our protocol requires

only 72 seconds. In an optimization achieving a slightly weaker variant of security

(augmented semi-honest model), the same task requires only 22 seconds.

The technical core of our protocol is oblivious evaluation of a programmable

pseudorandom function (OPPRF), which we instantiate in three different ways.

We believe our new OPPRF abstraction and constructions may be of independent

interest.



101

4.1 State of the Art for Multi-party PSI

A multi-party PSI protocol was first proposed by Freedman, Nissim, and

Pinkas [FNP04]. The protocol of [FNP04] is based on oblivious polynomial eval-

uation (OPE) which is implemented using additively homomorphic encryption,

such as Paillier encryption scheme. The basic idea is to represent a dataset as

a polynomial whose roots are its elements, and send homomorphic encryptions

of the coefficients of this protocol to obliviously evaluate it on the other party’s

inputs. Relying on the OPE technique, Kissner and Song [KS05] proposed a multi-

party PSI protocol with quadratic computation and communication complexity in

both the size of dataset and the number of parties. The computation overhead

is reduced to be linear in number of participants in [SS08], which was based on

bilinear groups. Furthermore, an efficient solution with quasi-linear complexity in

the size of dataset is proposed in [CJS12]. In both [SS08, CJS12], the maximum

number of the corrupted parties are assumed to be n/2. Very recent work [HV17]

describes new protocols which run over a star network topology, and are secure in

the standard model against either semi-honest or malicious adversaries. The basic

idea is to designate one party to run a version of the protocol of [FNP04] with all

other parties. The main building block in [HV17] is an additively homomorphic

public-key encryption scheme, with threshold decryption, whose key is mutually

generated by the parties. The protocol requires computing a linear number of en-

cryptions and decryptions (namely, exponentiations) in the input sets. In contrast,

our main building block is based on Oblivious Transfer extensions where the num-
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Protocol
Communication Computation Corruption Security
Leader Client Leader Client Threshold Model

[KS05] O(tnm log(|X|))λ O(ntm2) n− 1 semi-honest
[CJS12] O((n2m+ nm)λ) O(nm+m) bn/2c semi-honest
[HV17] O(nmλ) O(mλ) O(mn log2(m)) O(m) n− 1 semi-honest

Ours O(nmλ)
O(mλ) O(nκ)

O(κ)
n− 1

augmented semi-honest
O(mtλ) O(tκ) semi-honest

Table 4.1: Communication (bits) and computation (number of exponentiations)
complexities of multi-party PSI protocols in the semi-honest setting, where n is
number of parties, t dishonestly colluding, each with set size m; X is the domain of
the element; and λ and κ are the statistical and computational security parameters,
respectively. In our protocols, the computational complexities are in an offline
preprocessing phase.

ber of exponentiations does not depend on the size of the dataset. [HV17] does not

include implementation, but we expect that our protocols are much faster due to

building from symmetric primitives. We describe the performance of representative

multi-party PSI protocols in the semi-honest settings in Table 6.1.

We mention that multi-party PSI was also investigated in the server-aided

model, based on the existence of a server which does not collude with clients

[MN15, ATD15]. Information-theoretic PSI protocols, possible in the multi-party

setting, are considered in [LW07, PCR08, BA12].

4.2 Our Contributions

We design a modular approach for multi-party PSI that is secure against an arbi-

trary number of colluding semi-honest parties. Our approach can be instantiated

in a number of ways providing trade-offs for security guarantees and computation
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and communication costs.

We implemented several instantiations of our PSI approach. To our knowledge,

this is the first implementation of multi-party PSI. We find that multi-party PSI

is practical, for sets with a million items held by around 15 parties, and even

for larger instances. The main reason for our protocol’s high performance is its

reliance on fast symmetric-key primitives. This is in contrast with prior multi-

party PSI protocols, which require expensive public-key operations for each item.

Our implementation will be made available on GitHub.

Our PSI Approach. The main building block of our protocol, which we believe

to be of independent interest, is oblivious, programmable PRF (OPPRF). Recall,

oblivious PRF (OPRF) is a 2-party protocol in which the sender learns a PRF key

k and the receiver learns F (k, r), where F is a PRF and r is the receiver’s input.

In an OPPRF, the PRF F further allows the sender to “program” the output of

F on a limited number of inputs. The receiver learns the PRF output as before,

but, importantly, does not learn whether his input was one on which the PRF

was programmed by the sender. We propose three OPPRF constructions, with

different tradeoffs in communication, computation, and the number of points that

can be programmed.

Basic idea. Our PSI protocol consists of two major phases. First, in the

conditional zero-sharing phase, the parties collectively and securely generate

additive sharings of zero, as follows. Each party Pi obtains, for each of its items xj,

a share of zero, denoted sij. It holds that
∑n

i=1 s
i
j = 0. Namely, if all parties have
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xj in their sets then the sum of their obtained shares is zero (else, w.h.p., the sum

is non-zero). In the second phase, parties perform conditional reconstruction

of their shares. The idea is for each Pi to program an instance of OPPRF to

output its share sij when evaluated on input xj. Intuitively, if all parties evaluate

the corresponding OPPRFs on the same value xj, then the sum of the OPPRF

outputs is zero. This signals that xj is in the intersection. Otherwise, the shares

sum to a random value.

This brief overview ignores many important concerns — in particular, how the

parties coordinate shares and items without revealing the identity of the items.

We propose several ways to realize each of the two PSI phases, resulting in a suite

of many possible instantiations. We then discuss the strengths and weaknesses of

different instantiations.

A more detailed overview of the approach and the two phases is presented in

Section 4.5, prior to the presentation of the full protocol.

4.3 Programmable OPRF

Our PSI approach builds heavily on the concept of oblivious PRFs (OPRF). We

review the concepts here and also introduce our novel programmable variant of an

OPRF.
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Parameters: A programmable PRF F , and upper bound n on the number
of points to be programmed, and bound t on the number of queries.

Behavior: Wait for input ¶ from the sender S and input (q1, . . . , qt)
from the receiver R, where ¶ = {(x1, y1), . . . , (xn, yn)} is a set of points.
Run (k, hint) ← KeyGen(¶) and give (k, hint) to the sender. Give
(hint, F (k, hint, q1), . . . , F (k, hint, qt)) to the receiver.

Figure 4.1: The OPPRF ideal functionality FF,t,nopprf

4.3.1 Definitions

Oblivious PRF. An oblivious PRF (OPRF) [FIPR05] is a 2-party pro-

tocol in which the sender learns a PRF key k and the receiver learns

F (k, q1), . . . , F (k, qt), where F is a PRF and (q1, . . . , qt) are inputs chosen by the

receiver. Note that we are considering a variant of OPRF where the receiver can

obtain several PRF outputs on statically chosen inputs. We describe the ideal

functionality for an OPRF in Figure 2.2.

Instantiation and Security Details. While many OPRF protocols exist, we

focus on the protocol of Kolesnikov et al. [KKRT16]. This protocol has the ad-

vantage of being based on oblivious-transfer (OT) extension. As a result, it uses

only inexpensive symmetric-key cryptographic operations (apart from a constant

number of initial public-key operations for base OTs). The protocol efficiently

generates a large number of OPRF instances, which makes it a particularly good

fit for our eventual PSI application that uses many OPRF instances. Concretely,

the amortized cost of each OPRF instance costs roughly 500 bits in communication

and a few symmetric-key operations.
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Technically speaking, the protocol of [KKRT16] achieves a slightly weaker vari-

ant of OPRF than what we have defined in Figure 2.2. In particular, (1) PRF

instances are are generated with related keys, and (2) the protocol reveals slightly

more than just the PRF output F (k, q). We stress that in the resulting PRF of

[KKRT16] the construction remains secure even under these restrictions. More

formally, let leak(k, q) denote the extra information that the protocol leaks to

the receiver. [KKRT16] gives a security definition for PRF that captures the fact

that outputs of F , under related keys k1, . . . , kn, are pseudorandom even given

leak(ki, qi). Our OPPRF constructions are built on this OPRF, and as a result our

constructions would inherit analogous properties as well.

For ease of presentation and reasoning, we work with the cleaner security defi-

nitions that capture the main spirit of programmable OPRF. We emphasize that,

although cumbersome, it is possible to incorporate all of the [KKRT16] relaxations

into the definitions. We stress that our eventual application of PSI is secure in the

standard sense when built from such relaxed OP[P]RF building blocks.

Programmable PRF. We introduce a new notion of a programmable oblivious

PRF. Intuitively, the functionality is similar to OPRF, with the additional feature

that it allows the sender to program the output of the PRF on a set of points

chosen by the sender. Before presenting the definition of this functionality, we

discuss a PRF that supports being programmed in this way.

A programmable PRF consists of the following algorithms:

• KeyGen(1κ,¶) → (k, hint): Given a security parameter and set of points



107

¶ = {(x1, y1), . . . , (xn, yn)} with distinct xi-values, generates a PRF key k

and (public) auxiliary information hint. We often omit the security parameter

argument when it is clear from context.

• F (k, hint, x)→ y: Evaluates the PRF on input x, giving output y. We let r

denote the length of y.

A programmable PRF satisfies correctness if (x, y) ∈ ¶, and (k, hint) ←

KeyGen(¶), then F (k, hint, x) = y. For the security guarantee, we consider the

following experiment/game:

ExpA(X,Q, κ):

for each xi ∈ X, chose random yi ← {0, 1}r

(k, hint)← KeyGen(1κ, {(xi, yi) | xi ∈ X})

return A
(
hint, {F (k, hint, q) | q ∈ Q}

)
We say that a programmable PRF is (n, t)-secure if for all |X1| = |X2| = n, all

|Q| = t, and all polynomial-time A:

∣∣∣Pr[ExpA(X1, Q, κ)⇒ 1]− Pr[ExpA(X2, Q, κ)⇒ 1]
∣∣∣

is negligible in κ

Intuitively, it is hard to tell what the set of programmed points was, given the

hint and t outputs of the PRF, if the points were programmed to random outputs.

Note that this definition implies that unprogrammed PRF outputs (i.e., those not

set by the input to KeyGen) are pseudorandom.
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The reason for including a separate “hint” as part of the syntax is that our

protocol constructions will naturally leak this hint to the receiver (in addition to

the receiver’s PRF output). We propose a definition that explicitly models this

leakage and ensures that it is safe.

Oblivious Programmable PRF (OPPRF). The formal definition of an obliv-

ious programmable PRF (OPPRF) functionality is given in Figure 4.1. It is similar

to the plain OPRF functionality except that (1) it allows the sender to initially pro-

vide a set of points ¶ which will be programmed into the PRF; (2) it additionally

gives the “hint” value to the receiver.

We now give several constructions of an OPPRF, with different tradeoffs in

parameters.

4.3.2 A Construction Based on Polynomials

Our polynomial-based construction is presented in Figure 4.2. We first describe the

underlying programmable PRF. Let F be a PRF and define our new programmable

PRF F̂ as follows:

• KeyGen(¶ = {(x1, y1), . . . , (xn, yn)}): Choose a random key k for F .

Interpolate a degree n − 1 polynomial p over the points {(x1, y1 ⊕

F (k, x1)), . . . , (xn, yn ⊕ F (k, xn))}. Let hint be the coefficients of p.

• F̂ (k, hint, q) = F (k, q)⊕ p(q).

It is not hard to see that F̂ satisfies correctness since for xi ∈ ¶ it holds that
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F̂ (k, hint, xi) = F (k, xi) ⊕ p(xi) = F (k, xi) ⊕ yi ⊕ F (k, xi). Security follows from

the fact that when the yi values are distributed uniformly, so is the hint p. This is

true regardless of the number of queries the receiver makes.

Finally, the OPPRF protocol for F̂ is straightforward if there is an OPRF

protocol for F : the parties simply invoke FF,toprf on their inputs. The sender obtains

k and uses it to generate the hint as above, and sends it to the receiver. The

receiver, obtaining F (k, qi) from FF,toprf, can compute its output F̂ (k, hint, qi) =

F (k, qi) ⊕ p(qi). The description of the OPPRF protocol is given in Figure 4.2.

Simulation is trivial, as the parties’ views in the protocol are exactly the OPPRF

output.

Costs. The main advantage of this construction is that the only message that

needs to be sent in addition to the Foprf protocol is the polynomial p whose length

is exactly that of n values. This seems the minimal communication overhead that

is needed to achieve OPPRF from OPRF. On the other hand, the interpolation of

the polynomial takes time O(n2) which can be expensive for large n.

4.3.3 A Construction Based on Bloom Filters

Garbled Bloom filters (GBF) were introduced in [DCW13] in the context of PSI

protocols. A GBF is an array GBF [1 . . . N ] of strings, associated with a collection

of hash functions h1, . . . , hk : {0, 1}∗ → [N ]. The GBF implements a key-value
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Input of S: n points ¶ = {(x1, y1), . . . , (xn, yn)}, where xi ∈ {0, 1}∗, xi 6= xj;
and yi ∈ {0, 1}r

Input of R: Q = (q1, . . . , qt) ∈ ({0, 1}∗)t.

Protocol:

1. R sends Q to FF,toprf. The sender receives k and receiver receives F (k, q)
for q ∈ Q.

2. S interpolates the unique polynomial p of degree n − 1 over the points
{(x1, y1 ⊕ F (k, x1)), . . . , (xn, yn ⊕ F (k, xn))}.

3. S sends the coefficients of p to R.

4. R outputs (p, F (k, q1)⊕ p(q1), . . . , F (k, qt)⊕ p(qt)).

Figure 4.2: Polynomial-based OPPRF protocol

store, where the value associated with key x is:

⊕k
j=1 GBF [hj(x)]. (?)

A GBF can be programmed to map specific keys to chosen values:

1. Initialize array GBF with all entries equal to ⊥

2. For each key-value pair (x, v), let J = {hj(x) | GBF [hj(x)] = ⊥} be the

relevant positions of GBF that have not yet been set. Abort if J = ∅.

Otherwise, choose random values for GBF [J ] subject to the lookup equation

(?) equaling the desired value v.

3. For any remaining GBF [j] = ⊥, replace GBF [j] with a randomly chosen

value.
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It is clear that, unless this procedure aborts, it produces a GBF with the desired

key-value mapping. In [DCW13] it was observed that the procedure aborts when

processing item x if and only if x is a false positive for a plain Bloom filter contain-

ing the previous items (think of the plain Bloom filter obtained by interpreting

a ⊥ in GBF as 0 and anything else as 1). The false-positive probability for a

plain Bloom filter has been well analyzed. In particular, to bound the probability

by 2−λ, one can use a table with N = nλ log2 e entries to store n items. In that

case, the optimal number of hash functions is λ. If we set λ = 40, we get that the

table size is about 60n and the number of hash functions is k = 40. In addition,

by doing less hashing[KM08], each insert only requires two hash functions h1(x)

and h2(x). The additional k − 2 hash functions hi(x), i ∈ [3, k], is simulated by

hi(x) = h1(x) + i× h2(x).

Given the GBF construction, an OPPRF construction is relatively straightfor-

ward and similar to the polynomial-based construction. Instead of the mappings

xi 7→ yi ⊕ F (k, xi) being stored in a polynomial, they are stored in a GBF. The

construction is defined in Figure 4.3. Security holds naturally, since if the yi points

are chosen randomly, all positions in the GBF are uniformly distributed.

Costs. The advantage of the Bloom filter based construction, compared to the

polynomial-based construction, is that the insertion algorithm runs in time O(n)

rather O(n2), and is also very efficient in practice. The communication is still

O(n) but the constant coefficient is high (the actual communication is 60n items

rather than n) and therefore communication might be a bottleneck, especially on



112

Input of S: n points ¶ = {(x1, y1), . . . , (xn, yn)}, where xi ∈ {0, 1}∗, xi 6= xj
and yi ∈ {0, 1}r

Input of R: Q = (q1, . . . , qt) ∈ ({0, 1}∗)t.

Protocol:

1. R sends Q to FF,toprf. The sender receives k and receiver receives F (k, q)
for q ∈ Q.

2. S inserts the n pairs

{(x1, y1 ⊕ F (k, x1)), . . . , (xn, yn ⊕ F (k, xn))}

into a garbled Bloom filter denoted as G, with entries which are each r
bits long. It fills the remaining empty entries with random values.

3. S sends G to R as well as the k hash functions (the functions need not
be sent explicitly, and can be defined by setting some context dependent
prefixes to inputs of a known hash function).

4. For i = 1 to t, R computes zi = F (k, qi) ⊕
⊕k

j=1G[hj(qi)]. Finally R
outputs (G, z1, . . . , zt).

Figure 4.3: Bloom-filter-based OPPRF protocol

slow networks.

4.3.4 Table-Based Construction

The previous OPPRF constructions can be instantiated with any underlying OPRF

that allows the receiver to evaluate the PRF on any number t of points. The

resulting OPPRF constructions will inherit the same t. Meanwhile, our most

efficient OPRF building block from [KKRT16] only supports t = 1. In this section

we describe a construction tailored for the case of t = 1, and for small values of n
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(the number of programmed points).

The main idea behind this construction is as follows. For each pair (xi, yi) the

sender S uses F (k, xi) as an encryption key to encrypt the corresponding value yi.

Let T be the collection of these encryptions; then T comprises the OPPRF hint.

At a high level, the receiver can obtain F (k, q) and use it as a key to decrypt the

appropriate ciphertext from T .

The main challenges are: (1) R should not know whether he is getting random

or programmed output values (i.e. whether x = xi for some i), and (2) R must

learn which ciphertext from T to decrypt. We achieve both properties by using

F (k, q) to derive a pointer into the table T . In order to achieve property (1), R

must always decrypt some ciphertext of T , even if x 6= xi.

Concretely, suppose n is 20, so that S needs to program only 20 points. S

will make a table T of size 25 = 32 (next power of 2 greater than 20). S will

choose a random nonce v ∈ {0, 1}κ until {H(F (k, xi)‖v) | i ≤ 20} are all distinct,

where H : {0, 1}∗ 7→ {0, 1}5 is a hash function modeled as a random oracle. For

each i ∈ [n], S computes hi = H(F (k, xi)‖v), and sets Thi = F (k, xi) ⊕ yi. The

remaining entries of T (32 − 20 = 12 of them in this case) are chosen uniformly.

S sends this nonce v together with the table T to the the receiver as part of the

hint.

From the receiver’s point of view, on input x he will use F (k, q) to decrypt

the ciphertext in position H(F (k, q)‖v) of the table. The distinctness of the

H(F (k, xi)‖v) values allows the sender to place encryptions of the yi values at

appropriate positions in T without any conflicts. The details are given in Fig-
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Input of S: n points ¶ = {(x1, y1), . . . , (xn, yn)}, where xi ∈ {0, 1}∗, xi 6= xj;
and yi ∈ {0, 1}r

Input of R: q ∈ {0, 1}∗.

Parameters: random oracle H : {0, 1}∗ → {0, 1}m, where m = 2dlog(n+1)e.

Protocol:

1. R sends q to FF,toprf. The sender receives k and receiver receives F (k, q).

2. S samples v ← {0, 1}κ until {H(F (k, xi)‖v) | i ∈ [n]} are all distinct.

3. For i ∈ [n], S computes hi = H(F (k, xi)‖v), and sets Thi = F (k, xi)⊕yi.

4. For j ∈ {0, 1}m \ {hi | i ∈ [n]}, S sets Tj ← {0, 1}r.

5. S sends T and v to R.

6. R computes h = H(F (k, q)‖v), and outputs (T, v, Th ⊕ F (k, q)).

Figure 4.4: Basic table-based OPPRF protocol.

ure 4.4. Note that the OPPRF protocol is restricted to the case of t = 1. Because

of that, it suffices to use one-time pad encryption for the table entries.

Security & parameters. The underlying programmable PRF satisfies security

based on two observations: The easy observation is that table T itself is uniformly

distributed when the yi values are uniformly distributed (as in the security defini-

tion for programmable PRF).

Next, we must argue that the nonce v leaks no information about the set of

programmed points. Fix a candidate v and define zi = H(F (k, xi)‖v). The sender

tests this candidate v by seeing whether there is a collision among {zi} values. The

receiver sees at most one value of the form F (k, xi). So by the PRF security of F ,
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at least n− 1 of the other F outputs are distributed randomly from the receiver’s

perspective. Since H is a random oracle, it follows that at least n − 1 of the zi

values are distributed independent of the receiver’s view (even when the receiver

has oracle access toH). Finally, the condition of a collision among randomly chosen

{zi} values is independent of any single zi. Hence, the probability of a candidate

v being chosen (and thus the overall distribution of v) is the same regardless of

whether the receiver queried F on one of the sender’s programming points.

It is important to discuss the parameter choice m (length of H output), as it

greatly affects performance (the number of retries in step 2 of the protocol). We

can calculate the probability that for a random v, the {H(si‖v) | i ∈ [n]} values

are distinct:

Prunique =
∏n−1

i=1

(
1− i

2m

)
(4.1)

The expected number of restarts when sampling v is 1/Prunique.

Looking ahead to our PSI protocol, the OPPRF will be programmed with n

items, where n is the number of items hashed into a particular bin. Different bins

will have a different number of items. We must set m in terms of the worst case

number of items per bin, so that no bin exceeds 2m items with high probability.

However, on average, a bin will have very few items.

Concretely, for PSI of 220 items we choose hashing parameters so that no bin

exceeds 30 items with high probability. Hence we set m = 5 (so T has 32 entries).

Yet, the expected number of items in a bin is roughly 3. For the vast majority of

bins, the sender programs the OPPRF on at most 7 points. In such a bin, only 2
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trials are expected before finding a suitable v.

Costs. This OPPRF construction has favorable communication and computa-

tional cost. It requires communicating a single nonce v along with a table whose

length is that of O(n) items. The constant in the big-O is at most 2 (the number

of items is rounded up to the nearest power of 2). The computational cost of the

protocol is to evaluate a random oracle H, nτ times, where τ is the number of

restarts in choosing v. While these computational costs can be large in the worst

case, the typical value of τ in our PSI protocol is a small constant when averaged

over all of the instances of OPPRF. Our experiments confirm that this table-based

OPPRF construction is indeed fast in practice.

4.4 Extending OPPRF to Many Queries

The OPPRF constructions in the previous section are efficient when n (the number

of programmed points) is small. When built from the efficient OPRF protocol of

[KKRT16], they allow the receiver to evaluate the programmable PRF on only

t = 1 point. We now show how to use a hashing technique to overcome both of

these limitations. We show how to extend OPPRF constructions described in the

previous section to support both a large n and a large t.

At the high level, the idea is that each party hashes their items into bins. Each

bin contains a small number of inputs which allows the two parties to evaluate

OPPRF bin-by-bin efficiently. The particular hashing approach we have in mind
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is as follows. Suppose the receiver has items (q1, . . . , qt) on which he wants to

evaluate an OPPRF. The sender has a set ¶ = {(x1, y1), . . . , (xn, yn)} of points to

program.

Cuckoo hashing. The receiver uses Cuckoo hashing (Section 2.5) to hash his

items into bins. We will use a variant of Cuckoo hashing with k hash functions

h1, . . . , hk, and m bins denoted as B[1 · · ·m]. Each item q is placed in exactly

one of {B[h1(q)], . . . , B[hk(q)]}. Based on t and k, the parameter m is chosen

so that every bin can contain at most one item with probability 1 − 2−λ for a

security parameter λ. We note that previous applications of Cuckoo hashing to

PSI [PSSZ15] have used a variant of Cuckoo hashing that involves an additional

stash (a place to put items when insertion fails). However, a stash renders our

scheme much less efficient (every item in one party’s stash must be compared to

every item of another party). Instead, we propose a variant of Cuckoo hashing that

avoids a stash by using 3 “primary” Cuckoo hash functions, and then falling back

to 2 “supplementary” Cuckoo hash functions when the first 3 fail. We empirically

determine the parameters used in our hashing scheme to ensure that the hashing

succeeds except with the probability less than 2−λ. The details are in the full

version of our paper.

Simple hashing. Using the same set of hash functions, the sender then maps

his points {x1, . . . , xn} into bins, with each item being mapped under all of the

Cuckoo hash functions (i.e., each of the sender’s items appears k times in the hash

table). Using standard balls-and-bins calculations based on n, k, and m, one can
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Probability
Bin scale & set size n

Max Bin Size 212 214 216 220 224

2−30

ζ1 1.15 1.13 1.13 1.13 1.12
ζ2 0.14 0.14 0.14 0.15 0.16
β1 28 28 29 30 31
β2 63 63 63 63 63

2−40

ζ1 1.17 1.15 1.14 1.13 1.12
ζ2 0.15 0.16 0.16 0.17 0.17
β1 27 28 29 30 31
β2 63 63 63 63 63

Table 4.2: Required number of bins m1 = nζ1,m2 = nζ2 to mapping n items using
Cuckoo hashing, and required bin size β1, β2 to mapping n items into m1 and m2

bins using Simple hashing.

deduce an upper bound β such that no bin contains more than β items except with

probability 1/2λ.

Denote by m1,m2 the number of bins used in 3-way “primary” Cuckoo hashing

and 2-way “supplementary” Cuckoo hashing, respectively. Let β1, β2 denote the

maximum bin size when using Simple hashing to map n items to m1 and m2 bins

with no overflow, respectively. The parameters m = m1 + m2 and β ∈ {β1, β2}

presented in Table 5.2. The details of how we obtained these numbers are given

in the full version of our paper.

Now within each bin, the receiver has at most one item q and the sender has at

most β, call them {(x1, y1), . . . , (xβ, yβ)}. They can therefore run the basic OPPRF

protocol on these inputs. Note that each of the sender’s points (x, y) is mapped to

several bins. The OPPRF in each of those bins will be programmed with the same

(x, y). That way, if the receiver does have some qi = x, then no matter which of

the possible bins it is mapped to in Cuckoo hashing, the receiver will receive the
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Input of S: n points ¶ = {(x1, y1), . . . , (xn, yn)}, where xi ∈ {0, 1}∗, xi 6= xj
and yi ∈ {0, 1}r

Input of R: Q = (q1, . . . , qt) ∈ ({0, 1}∗)t.

Parameters:

• Hash function h1, . . . , h5, number of bins m ∈ {m1,m2}, and max bin
size β ∈ {β1, β2}, suitable for our hashing scheme (Table 5.2)

Protocol:

1. R hashes items Q into m bins using the Cuckoo hashing scheme defined
in Section 4.4. Let BR[b] denote the item in the receiver’s bth bin (or a
dummy item if this bin is empty).

2. S hashes items {x1, . . . , xn} into m1 bins under 3 hash functions
h1, h2, h3, and hashes items {x1, . . . , xn} into m2 bins under 2 hash func-
tions h4, h5. Let BS [b] denote the set of items in the sender’s bth bin.

3. For c ∈ [1, 2], for each bin b ∈ [mc]:

(a) S computes ¶b = {(xi, yi) | (xi, yi) ∈ ¶ and xi ∈ BS [b]}, then pads
¶b with dummy pairs to the maximum bin size βc

(b) Parties invoke an instance of FF,1,βcopprf with inputs ¶b for the sender
and BR[b] for the receiver.

(c) S receives output (kb, hintb), and R receives output
(hintb, F (kb, hintb, BR[b])).

4. For each item qi ∈ Q, let zi = F (kb, hintb, qi) where b is the bin to which
R has hashed qi. The receiver outputs (hint1, . . . , hintm), (z1, . . . , zt)

Figure 4.5: Hashing-based OPPRF protocol

correct output y.

The formal description of this protocol is given in Figure 4.5. The protocol

requires m invocations of a single-query OPPRF, where m = O(n) is the number

of Cuckoo hash bins.
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In sum, we are able to evaluate OPPRF for large number of programmed points

n and large number of queries simply by having players hash their inputs into bins,

and evaluate OPPRF per bin on small-size instances.

Caveats. One subtlety in analyzing our construction has to do with the security

definition for a programmable PRF. Recall that in that definition (Section 4.3.1),

the programmed output (y values) are chosen randomly. Yet in our protocol the

sender programs different bins with correlated outputs. In particular, when an xi

is mapped to several bins, the OPPRF in each bin is programmed with the same

(xi, yi) point. To deal with this, we must use the fact that the receiver is guaranteed

to never query two bins on the same q (corresponding to the fact that his Cuckoo

hashing assigns each q to a unique bin).

4.5 Multi-Party PSI

We now present our main result, an application of OPPRF to multi-party PSI. We

use the following notation in this section. We denote the n parties by P1, . . . , Pn,

and use subscripts i and j to refer to individual parties. Let Xi ⊆ {0, 1}∗ denote the

input set of party Pi. The goal is to securely compute the intersection
⋂
iXi. For

sake of simplicity, we assume each set has m items and write Xi = {xi1, . . . , xim}.

We use subscript k to refer to a particular item xik.

As discussed at the Introduction (cf. Section 4.2), our PSI protocol proceeds

in two consecutive phases, conditional zero-sharing and conditional recon-
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struction of secrets. Importantly, OPPRF is efficient even when run on large input

sets, thanks to our use of Cuckoo hash as discussed in Section 4.4.

4.5.1 Conditional Zero-Sharing

We will first describe the end goal of conditional zero-sharing and then discuss

how we use multi-query OPPRF of Section 4.4 to achieve it. At the end of this

phase, each party Pi will have a mapping Si : Xi → {0, 1}∗ that associates each of

its items xik ∈ Xi with an additive secret share Si(x
i
k). We require the following

property: if x ∈
⋂
iXi (i.e., x is in the intersection), then the corresponding shares

{Si(x) | i ∈ [n]} will XOR to zero.

To achieve this, first consider the case of two parties P1 and P2. For each

item x1
k ∈ X1, party P1 will choose a random string sk and record the mapping

S1(x1
k) = sk. Then the parties can use an instance of multi-query OPPRF as

follows. P1 programs the OPPRF using points {(x1
k, sk) | k ∈ [m]}, and P2 acts

as receiver with input queries X2. As a result, P2 will obtain for every x2
k ∈ X2 a

corresponding OPPRF output, which we will denote S2(x2
k). From the properties

of an OPPRF, the mappings S1 and S2 have the desired property. If the parties

share an item x1
k then both will have S1(x1

k) = S2(x1
k) = sk, corresponding to an

XOR-additive sharing of 0. The properties of the OPPRF ensure that P2 does not

know whether he is receiving real shares or random values for any item.

The case of n parties is similar. Each party Pi will act as dealer for each of their

items xik ∈ Xi, generating a random additive sharing of zero: si,1k ⊕ · · · ⊕ s
i,n
k = 0.
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Then each pair of parties Pi and Pj use an instance of OPPRF as follows. Pi

programs the OPPRF using points {(xik, s
i,j
k ) | k ∈ [m]}, and Pj acts as receiver

with input queries Xj. In other words, si,jk is the share that is conditionally sent

from party Pi to Pj pertaining to item xik.

Now each Pj has acted as OPPRF receiver for all other parties. For each item

xjk ∈ Xj, the party has an OPPRF output from every sender Pi, along with their

own share sj,jk . Denote by Sj(x
j
k) the XOR of all of these values. It is easy to see

that these Sj mappings satisfy the desired property. If some x is shared by all

parties, then all pairs of parties will exchange shares corresponding to that item.

All shares generated by a single party XOR to zero, so all of the Sj(x) values XOR

to zero as desired.

4.5.2 Conditional Reconstruction

The second phase of the protocol is a conditional reconstruction of secrets. In

this phase party P1 acts as a centralized “dealer.” For each item x ∈ X1 belonging

to the dealer, he would like to determine whether x is in the intersection. It suffices

for him to obtain all Si(x) values from all the parties. However, since some parties

may not hold item x, they may not have a well-defined Si(x) value.

This problem can again be solved with an OPPRF. Each party Pi programs an

OPPRF instance on points {(x, Si(x)) | x ∈ Xi}, and P1 acts as receiver with PRF

queries X1. Hence, for each item x ∈ X1, dealer P1 learns an associated value yi

from the OPPRF with party i. If x is indeed in the intersection, then we expect
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Parameters: n parties P1, . . . , Pn.

Input: Party Pi has input Xi = {xi1, . . . , xim} ⊆ {0, 1}∗

Protocol:

1. For all i ∈ [n] and all k ∈ [m], party Pi chooses random {si,jk | j ∈ [n]}
values subject to

⊕
j s

i,j
k = 0.

2. For all i, j ∈ [n], parties Pi and Pj invoke an instance of FF,m,mopprf where:

• Pi is sender with input {(xik, s
i,j
k ) | k ∈ [m]}.

• Pj is receiver with input Xj.

For xjk ∈ Xj, let ŝi,jk denote the corresponding output of Fopprf obtained
by Pj.

3. For all i ∈ [n] and k ∈ [m], party Pi sets Si(x
i
k) = si,ik ⊕

⊕
j 6=i ŝ

j,i
k .

4. For i = 2 to n, parties Pi and P1 invoke an instance of FF,m,mopprf where:

• Pi is sender with input {(xik, Si(xik) | k ∈ [m]}.
• P1 is receiver with input X1.

For x1
k ∈ X1, let yik denote the corresponding output for x1

k of Fopprf

involving Pi.

5. Party P1 announces {x1
k ∈ X1 | S1(x1

k) =
⊕

i 6=1 y
i
k}.

Figure 4.6: Multi-Party PSI Protocol

⊕
i 6=1 y

i = S1(x). Otherwise the left-hand-side will be a random value.

4.5.3 Details and Discussion

A formal description of the protocol is in Figure 4.6.
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Correctness. From the preceding high-level description, it is clear that the pro-

tocol is correct except in the event of a false positive — i.e., S1(x1
k) =

⊕
i y

i
k for

some x1
k ∈ X1 not in the intersection. Let Pi be a party who did not have x1

k in

their input set. That party will not program their OPPRF in Step 4 on the point

x1
k. As a result, the term yik is pseudorandom. Hence the probability that of a false

positive involving x1
k is 2−`. By setting ` = λ+ log2(m), a union bound shows that

the probability of any item being erroneously included in the intersection is 2−λ.

Theorem 11. The protocol of Figure 4.6 is secure in the semi-honest model,

against any number of corrupt, colluding, semi-honest parties.

Proof. Let C and H be a coalition of corrupt and honest parties, respectively. To

show how to simulate C’s view in the ideal model, we consider two following cases

based on whether all parties in C have item x:

• All parties in C have x and not all parties in H have x: if H contains only one

honest party Pi, then Pi does not have x. From the output of set intersection,

C can deduce that Pi does not have x. Thus, there is nothing to hide about

whether Pi has x in this case.

Consider the case that H has more than one honest party, say Pi and Pj.

Suppose Pi has x, while party Pj does not. So, x does not appear in the

intersection. We must show that the protocol must hide the identity of

which honest party is missing x.

In Step 2 of the protocol, there is an OPPRF instance with Pj as sender and

Pi as receiver. Pj will not program the OPPRF at point x, so Pi will receive
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a pseudorandom output for x that is independent of the corrupt coalition’s

view. This causes Si(x) to be independent of the coalition’s view.

Later in Step 4, if the dealer is corrupt, both Pi and Pj act as OPPRF senders

with the dealer. Pi programs the OPPRF at x using the pseudorandom value

Si(x). Pj doesn’t program the OPPRF at point x. The security of OPPRF is

that programming the PRF at x with a random output is indistinguishable

from not programming at x at all. In other words, parties Pi and Pj have

indistinguishable effect on the conditional reconstruction phase. If dealer is

honest, the corrupt coalition’s view is simulated from Step 2 based on the

functionality of OPPRF.

• Not all corrupt parties in C have x: we must show that C should learn

nothing about whether any of the honest parties hold x.

Any honest party Pi who holds x generates corresponding shares si,j, to be

conditionally distributed in Step 2. But some corrupt party does not query

the OPPRF on x in step 2. This makes all the si,j shares corresponding to x

distributed uniformly. All honest parties Pj who hold x will therefore have

Sj(x) uniformly distributed of the coalition’s view. In Step 4, the honest

parties that hold x will program the OPPRF on (x, Sj(x)). The honest par-

ties that don’t hold x will not program the OPPRF on point x. As above,

programming the PRF with a random output is indistinguishable from not

programming at that point at all. Hence all honest parties have indistin-

guishable effect on the reconstruction phase.
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Cost and Optimizations. In the conditional sharing phase, each party per-

forms a multi-query OPPRF with every other party. In the reconstruction phase,

each party performs just one multi-query OPPRF with the leader P1. Recall that

the cost of each of these is one instance of single-query OPPRF per Cuckoo-hashing

bin.

The multi-query OPPRF scales well when sender and receiver have different

number of elements. Therefore, our multi-party PSI protocol allows each party’s

set to have different size. The number of OPPRF instance depends on the number of

bins for Cuckoo-hashing, and the OPPRF receiver is the one using Cuckoo hashing

(sender uses plain hashing). Thus, our PSI protocol is more efficient by setting the

leader P1 as the party with the smallest input set.

We note that all of the OPPRF instances in the conditional sharing phase can

be done in parallel, and all the OPPRF instances in the reconstruction phase can

as well. This leads to a constant-round protocol.

Finally, recall that the multi-query OPPRF uses Cuckoo hashing. It is safe

for all such instances, between all pairs of parties, to use the same Cuckoo hash

functions. That way, a party only needs to hash their input set twice at the

beginning of the protocol (once with Cuckoo hashing for when they are OPPRF

receiver, and once with simple hashing for when they are OPPRF sender).

Generalization. Suppose we wish to secure the protocol against the possibility

of at most t corrupt (colluding) parties. The default case is to consider t = n− 1.
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For smaller t, we can simplify the protocol. The idea is to modify the condi-

tional zero-sharing protocol so that party Pi generates shares of zero only for

{Pi+1, . . . , Pi+t+1} (where indices on parties are mod n). The security analysis

applies also to this generalization, based on the fact that if Pi is honest, then at

least one of Pi+1, . . . , Pi+t+1 must also be honest.

4.6 Further Optimizations

4.6.1 PSI in Augmented Semi-Honest Model

In this section we show an optimization to our PSI protocol which results in a

protocol secure in the augmented semi-honest model.

Unconditional zero-sharing. The previous protocol starts with a conditional

zero-sharing phase, where parties obtain shares of zero or shares of a random

value, based on whether they share an input item x. In this section we propose an

unconditional zero-sharing technique in which the parties always receive shares of

zero.

We describe a method for generating an unlimited number of zero-sharings

derived from short seeds that can be shared in a one-time initialization step. The

protocol is described in Figure 4.7. The protocol is based on an initialization step

where each pair of parties exchange keys for a PRF F , after which each party

knows n − 1 keys. Then, whenever zero-sharing is needed, party Pi generates

a share as Si(ind) =
⊕

r F (r, ind), where ind is an index which identifies this
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Initialization: Each party Pi picks random seeds ri,j for j = i + 1, . . . , n
and sends seed ri,j to Pj

Generate zero-sharing: Given an index ind, each Pi computes

Si(ind) =

(
i−1⊕
j=1

F (rj,i, ind)

)
⊕

(
n⊕

j=i+1

F (ri,j, ind)

)

Figure 4.7: The zero-sharing protocol

protocol invocation, and r ranges over all the keys shared with other parties.

We first observe that the XOR of all Si(ind) shares is indeed 0, since each

term F (ri,j, ind) appears exactly twice in the expression. As for security, consider

a coalition of t < n − 1 corrupt parties, and let Pk be the honest party with

smallest index. Pk sends random seeds to all other honest parties. These seeds are

independent of all other seeds, and are unknown to the corrupt coalition. They

result in set of n − t − 1 pseudorandom terms that are included in the shares of

all honest parties other then Pk. Therefore the shares of the honest parties look

pseudorandom to the coalition (subject to all shares XORing to zero).

Plugging into the PSI protocol. Suppose we modify our main PSI protocol

(Figure 4.6) in the following ways:

• Instead of steps 1-3, the parties perform the unconditional zero-sharing phase

of Figure 4.7. That is, they run the initialize phase to exchange seeds and

then set their Si mappings accordingly.

• Then they continue with Figure 4.6 starting at step 4.
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The modification significantly reduces the cost of the zero-sharing phase (which

was the most expensive part of Figure 4.6) with a zero-sharing phase that costs

almost nothing. Our experiments confirm that this modified protocol is faster than

the standard semi-honest-secure protocol, by a significant constant factor.

Correctness of the modified protocol follows from the same reasons as for the

unmodified protocol. Namely, if some party Pi does not have an item x, then they

will not program their OPPRF with P1 at point x. This causes P1 to obtain a

random value in the reconstruction phase and subsequently not include x in the

output.

Theorem 12. The modified protocol (with unconditional zero-sharing) is secure

in the augmented semi-honest model.

Proof Sketch. Consider a coalition C of corrupt parties. We must show how to

simulate C’s view in the ideal model. If P1 6∈ C then, assuming that the under-

lying OPRF protocol is secure, the view of C consists only of the output of the

invocations of the OPRF protocol (acting as sender in each one), and is therefore

random. If the leader P1 ∈ C then the simulator sends to the ideal PSI function-

ality the set X1 as the input of every corrupt party (this is the advantage given to

the simulator in the augmented security model). Let Z denote the output of the

functionality (the intersection of all sets). P1’s view contains OPPRF outputs from

all honest parties, corresponding to every x ∈ X. For x ∈ Z, simulate a random

sharing of zero as the corresponding OPPRF outputs. For x ∈ X1 \ Z, simulate

random values for the corresponding OPPRF outputs.
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Let us give an intuition on why this protocol achieves security only in the

augmented model. In this modified protocol, the zero-sharing for each candidate

x is generated non-interactively by the parties. So even though a corrupt party Pi

does not have an item x, he can non-interactively imagine what his correct share

Si(x) would be. When colluding with P1, this allows the adversary to learn exactly

what would have happened if Pi included x in its set (but only if x ∈ X1 as well).

In the semi-honest protocol (Section 4.5), however, a corrupt party interacts

with honest parties to generate a zero-sharing corresponding to x. At the time

of the interaction, the corrupt party Pi “commits” to having x in its input set or

not, depending on whether it queries the OPPRF on x. If during the (conditional)

zero-sharing phase Pi does not have x in its input set, then there is no way to later

guess what the “correct share” would have been.

4.6.2 Reducing OPPRF Hint Size

In this section we look inside the several layers of abstraction in our PSI protocol,

and use a global view of things to find room for optimization. We focus on the

multi-query OPPRF construction from Section 4.4. Recall that it works in the

following way:

• The OPPRF receiver hashes their queries into m bins via a Cuckoo hashing

method.

• The OPPRF sender hashes their programming-points intom bins using simple

hashing, for each Cuckoo hash function (i.e., assigning a single item to many
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bins).

• In each bin, the parties perform a single-query OPPRF instance, where the

receiver queries on their (unique) item in that bin.

Now look even further inside those single-query OPPRF instances. In each one,

the parties invoke an OPRF instance and furthermore the sender gives a “hint”

that contains the information to correct/program the OPRF outputs to the desired

values.

There are two possible approaches for sending the hints that are required for

these OPPRF computations. The straightforward approach sends a separate hint

per OPPRF invocation, namely per bin. The other approach sends a single com-

bined hint for all bins. Namely, this combined hint is a single polynomial or Bloom

filter, which provides for each of the m possible inputs of Pi the correct “hint” for

changing the output of the corresponding OPRF invocation.

The advantage of the “separate hints” approach is that in each OPPRF invoca-

tion each party Pi has only S = O(logm/ log logm) points and therefore computing

the hint might be more efficient. This is relevant for the polynomial-based hint,

since its computation time is quadratic in the size of the set of points. Therefore,

the overhead of computing a single combined hint polynomial is O(m2) whereas

the overhead of computing hints for all bins is only O(m log2m/ log2(logm)). On

the other hand, when computing a hint per bin, the total number of points is

O(m logm/ log logm), whereas if a combined hint is used, the total number of

points is O(m). We expect (and validate in the experiments in Section 4.7), that
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a combined hint works better for the Bloom filter-based OPPRF, since the cost of

this method is linear in the total number of points. On the other hand, the bot-

tleneck of the polynomial-based OPPRF is the quadratic overhead of polynomial

interpolation, thus when using that OPPRF it is preferable to use separate hints

per bin.

Improvements: We can add the following improvements to the basic protocol:

• In polynomial-based OPPRF with “separate hints”, the OPPRF sender does

not need to pad with dummy items to the maximum bin size β before inter-

polating a polynomial over β pairs per bin. Instead of that, he interpolates

a polynomial p1(x) over k < β real pairs (xi, yi) and then add it with a

polynomial p2(x) of degree (β − 1). p2(x) can be efficiently implemented as

R(x)
∏k

i=1(x−xi), where R(x) is a random polynomial of degree (β−1−k).

Using example hashing parameters from Section 4.5, the expected value of k

is only 3, while the worst-case β = 30. This optimization reduces the cost of

expensive polynomial interpolation.

• In polynomial-based OPPRF with combined hints, the OPPRF sender can

send a combined hint for each hash function hi. That is, for each Cuckoo

hash function hi, the sender computes a hint that reflects all of the bin-

assignments under that specific hi. The receiver hashes its items with Cuckoo

hashing, and places each item according to exactly one hash function hi. For

each item, the receiver can therefore use the combined hint for that specific

hi.
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• In Bloom filter-based OPPRF invocation, each of sender’s item appears 5

times in hash table, there are 5 different OPRF values F (khi , x)). Instead of

inserting 5 pairs of the form (x, y ⊕ F (khi , x)) into the GBF, the sender can

instead insert the concatenated value (x, (y⊕F (kh1 , x))|| . . . ||(y⊕F (kh5 , x))).

This reduces the number of the GBF insertions.

4.6.3 3-party PSI in Standard Semi-Honest Model

Our idea for three-party PSI (3-PSI) is to have all 3 players perform an (encrypted)

incremental computation of the intersection. Namely, P1 and P2 will first let P2

obtain an encoding of partial intersection X12 = X1 ∩ X2. Then P2 and P3 will

allow P3 to obtain some encoding of X123 = X12 ∩X3. In the end, P1 will decode

the output X123 = X1 ∩X2 ∩X3.

To do this, the leader P1 chooses a random encoding e1
k for each of his inputs x1

k.

P1 then acts as a sender in OPPRF, programming it on points {(x1
k, e

1
k) | k ∈ [m]}.

P2 acts as a receiver in OPPRF using his input set X2, and obliviously receives

either one of these encodings (if his input was a corresponding match) or a random

string. Denote by ê2
k the value that P2 obtains for each of his items x2

k. The process

repeats: P2 will play the role of OPPRF sender with receiver P3. P2 will program

the OPPRF on points {(x2
k, ê

2
k) | k ∈ [m]} and P3 will query the OPPRF on his

input set X3. Denote by ê3
k the value that P3 obtains for each of his items x3

k.

Finally, P3 acts as OPPRF sender and programs the OPPRF on points {(x2
k, ê

2
k) |

k ∈ [m]}, while P1 acts as receiver and queries the OPPRF on points X1. It is clear
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Parameters: 3 parties P1, P2, P3.

Input: Party Pi has input Xi = {xi1, . . . , xim} ⊆ {0, 1}∗

Protocol:

1. For all k ∈ [m], party P1 chooses random distinct {e1
k | k ∈ [m]} values.

2. Party P1 and P2 invoke with an instance of FF,m,mopprf where:

• P1 is sender with input {(x1
k, e

1
k) | k ∈ [m]}.

• P2 is receiver with input X2.

For x2
k ∈ X2, let ê2

k denote the corresponding output of Fopprf obtained
by P2.

3. In turn, each party Pi, i ∈ {2, 3}, invokes with Pi+1 an instance of FF,m,mopprf

where:

• Pi is sender with input {(xik, êik) | k ∈ [m]}.
• Pi+1 is receiver with input Xi+1.

For xi+1
k ∈ Xi+1, let êi+1

k denote the corresponding output of Fopprf ob-
tained by Pi+1 (indices are mod n)

4. Party P1 announces {x1
k ∈ X1 | e1

k = ê1
k}.

Figure 4.8: Optimized Three-party PSI Protocol

that if x1
k is in the intersection, then P1 will receive e1

k (a value he initially chose)

as OPPRF output; otherwise he will receiver a random value. A formal description

of the protocol is in Figure 4.8.

Extending the above to n > 3 parties faces the following difficulty: If P1 and

Pj collude, they will learn the partial intersection X1 ∩ · · · ∩ Xj. Indeed, as an

OPPRF receiver, Pj will receive the set of values which can be cross-checked with

the encodings generated by P1. More generally, colluding players Pi and Pj can
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compute partial intersection Xi ∩ · · · ∩Xj by comparing their encodings.

We note that this is not an issue in 3-PSI, since colluding P1 and P2 can

compute X1∩X2 anyway; colluding P2 and P3 cannot learn any information about

the decrypted key e1
i held by P1 thus the corrupted parties compute X2 ∩ X3

anyway; and colluding P1 and P3 can compute X1 ∩X2 ∩X3 which is the desired

PSI output.

With the above optimization, our 3-PSI protocol needs only 3 OPPRF execu-

tions, compared to the 4 OPPRF executions for the general protocol described in

Section 4.5. The performance gain of the optimized protocol is not very strong

when the network is slow since parties invoke OPPRF in turn and they have to wait

for the previous OPPRF completed. We implemented both 3-PSI protocol variants

and found this optimized variant to be 1.2− 1.7× faster.

4.7 Implementation and Performance

In order to evaluate the performance of our multi-party PSI protocols, we imple-

ment many of the variants described here. We do a number of experiments on a

single server which has 2x 36-core Intel Xeon 2.30GHz CPU and 256GB of RAM.

We run all parties in the same network, but simulate a network connection using

the Linux tc command: a LAN setting with 0.02ms round-trip latency, 10 Gbps

network bandwidth; a WAN setting with a simulated 96ms round-trip latency, 200

Mbps network bandwidth.

In our protocol, the offline phase is conducted to obtain an 128 base-OTs us-
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ing Naor-Pinkas construction [NP01]. Our implementation uses OPRF code from

[KKRT16, Rin]. All evaluations were performed with a item input length 128

bits, a statistical security parameter λ = 40 and computational security parameter

κ = 128. The running times recorded are an average over 10 trials. Our com-

plete implementation is available on GitHub: https://github.com/osu-crypto/

MultipartyPSI

4.7.1 Optimized PSI, Augmented Model

In this section we discuss the PSI protocol from Section 4.6 that is optimized

for the augmented semi-honest model. We implemented and tested the following

variants (see Section 4.6.2 for discussion on variant techniques of sending hints) on

different set sizes m ∈ {212, 214, 216, 220}:

• BLOOM FILTER: where the OPPRF used a single combined garbled Bloom

filter hint. In our hashing-to-bin scheme, sender uses h = 5 hash functions

to insert m items into bins. With the optimization in Section 4.6.2, there are

only m pairs inserted into the table which has mλ log2 e entries. The table

uses an array of h(λ+ log2(m))-bit strings.

• POLYNOMIAL combined: where the OPPRF used combined polynomial

hints per hash index. Polynomial interpolation was implemented using the

NTL library[Sho]. Each polynomial is built on m points. The coefficients of

the polynomial are λ+ log2(m)-bit strings.

https://github.com/osu-crypto/MultipartyPSI
https://github.com/osu-crypto/MultipartyPSI
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• POLYNOMIAL separated: where the OPPRF used a separate polynomial

hint per bin. The coefficient of the polynomial has λ + log2(m)-bit strings.

The degree of polynomial is β1 for each bin in first mζ1 bins, and β2 for each

bin in last mζ2 bins. Here ζ1, ζ2, β1 and β2 are discussed in Table 5.2.

• TABLE: where the OPPRF used a separate table hint per bin. The table has

2dlog2(β1)e entries for each bin in first mζ1 bins, and 2dlog2(β2)e entries for each

bin in last mζ2 bins. Each row has λ+ log2(m)-bit strings.

The running times and communication overhead of our implement with 5 par-

ties are shown in Table 4.3. The leader party uses up to 4 threads, each operates

OPPRF with other parties. As expected, our table-based protocol achieves the

fastest running times in comparison with the other OPPRF constructions. Our

experiments show that it takes only one second to sample vector v and check

uniqueness for all 220 bins. Thus, the table-based PSI protocol costs only 22 sec-

onds for the set size m = 220. The polynomial-based PSI protocol with separated

hint is the next fastest protocol which requires a total time of 38 seconds, a 1.7×

slowdown. The slowest protocol is the polynomial-based protocol with combined

hint per hash index, whose running time clearly grows quadratically with the set

size. However, this protocol has the smallest communication overhead. For small

set size m = 214, the polynomial-based PSI protocol with combined hint requires

only 1.74MB for communication.
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Protocol
Running time (second) Communication (MB)

Set Size m
212 214 216 220 212 214 216 220

BLOOM FILTER 0.37 0.98 3.41 51.46 8.56 34.26 137.01 2496.2
POLY (combined hint) 7.36 194.96 - - 0.43 1.74 - -
POLY (separate hints) 0.32 0.74 2.33 37.89 1.46 5.98 24.30 447.44
TABLE 0.29 0.57 1.48 21.93 1.64 6.52 25.93 467.66

Table 4.3: The total runtime and communication of our Multi-Party PSI in aug-
mented semi-honest model in LAN setting. The communication cost which ignore
the fixed cost of base OTs for OT extension is on the client’s side. Cells with −
denote trials that either took longer than hour or ran out of memory.
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Figure 4.9: Total running time of our semi-honest Multi-Party PSI for the number
of parties n, t < n dishonestly colluding, each with set size 220, in LAN setting.

4.7.2 Standard Semi-Honest PSI

In this section we discuss the standard semi-honest variant of our protocol, using

conditional zero-sharing (Section 4.5). From the empirical results discussed in

the previous section, the most efficient OPPRF instantiation is the TABLE-based

hint. Thus, the OPPRF was instantiated using the TABLE-based protocol in this



139

Setting
Number Threshold Set Size m
Parties n Corruption t 212 216 220 224

LAN

3 {1, 2} 0.21 (0.99)* 1.34 (1.19)* 25.81 (25.23)* 409.90 (399.67)*
0.30 (0.16) 2.14 (1.97) 41.64 (41.10) 702.3 (69.69)

4
1 0.25 (0.12) 1.80 (1.60) 28.86 (28.27) 484.3 (478.2)
{2, 3} 0.34 (0.21) 3.16 (2.92) 52.25 (51.65) 865.7(859.4)

5
1 0.26 (0.12) 1.99 (1.79) 32.13 (31.49) 505.2 (499.2)
2 0.32 (0.19) 3.44 (3.23) 49.17 (48.54) -
4 0.39 (0.26) 4.87 (4.61) 71.28 (70.60) -

10
1 0.39 (0.17) 2.97(2.71) 46.08 (45.28) -
5 0.83 (0.55) 8.79 (8.47) 136.48 (135.44) -
9 1.01 (0.72) 12.33 (11.98) 182.8 (181.60) -

15
1 0.46 (0.23) 4.28 (3.97) 64.28 (63.27) -
7 1.37 (0.77) 13.47 (12.79) 201.12 (199.34) -
14 1.85 (1.32) 20.61 (20.02) 304.36 (302.17) -

WAN

3 {1, 2} 2.82 ( 2.34)* 10.48 (9.96)* 129.45 (128.64)* -
3.12 (2.64) 11.25 (10.73) 158.50 (157.64) -

4
1 2.65 (1.97) 12.40 (11.71) 151.9 (150.9) -
{2, 3} 3.18 (2.51) 17.47 (16.74) 233.1 (232.1) -

5
1 2.66 (1.99) 13.76 (13.06) 185.5 (184.5) -
2 3.21 (2.53) 20.29 (19.56) 290.9 (289.8) -
4 3.45 (2.78) 25.52 (24.79) 378.5 (377.4) -

10
1 3.30 (2.63) 26.42 (25.73) 400.9 (399.8) -
5 5.67 (4.98) 76.43 (75.78) 1,194 (1,193) -
9 7.81 (7.14) 112.8 (112.1) 1,915 (1,914) -

15
1 3.63 (3.15) 39.11 (38.60) 664.08 (662.80) -
7 9.87 (9.38) 150.85 (150.31) 2641 ( 2,640) -
14 16.42 (15.96) 263.20 (262.67) - -

Table 4.4: Total running time and online time (in parenthesis) in second of our
semi-honest Multi-Party PSI for the number of parties n, t < n dishonestly collud-
ing, each with set size m. Number with ∗ shows the performance of the optimized
3-PSI protocol described in Section 4.6.3. Cells with − denote trials that either
took longer than hour or ran out of memory.

section.

To understand the scalability of this protocol, we evaluate it on the range of
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Number Threshold Set Size m
Parties n Corruption t 212 216 220 224

3 {1, 2}
3.28 51.87 935.32

14,860{4, 5}
1{10, 15} -

4 {2, 3} 4.92 77.80 1,402 22,290

5
2 4.92 77.80 1,402 -
4 6.56 103.74 1,870 -

10
5 9.84 155.61 2,805 -
9 14.76 233.41 4,208 -

15
7 13.12 207.48 3,741 -
14 22.96 363.09 6,547 -

Table 4.5: The numerical communication (in MB) of our Multi-Party PSI in semi-
honest setting. The cost is on the client’s side for the number of parties n, t < n
dishonestly colluding, each with set size m. Communication costs ignore the fixed
cost of base OTs for OT extension. Cells with − denote trials that either took
longer than hour or ran out of memory.

the number parties n ∈ {3, 4, 5, 10, 15} on the set size m ∈ {212, 216, 220, 224}. We

also wanted to understand the performance effect of the generalization discussed

in Section 4.5.3 in which the protocol is tuned to tolerate an arbitrary number t

of corrupted parties. In our experiments, we used t ∈ {1, bn/2c, n− 1}.

Our protocol scales well using multi-threading between n parties. In our imple-

mentation, the leader P1 uses n−1 threads and other parties use min{t+ 1, n−1}

threads so that each party operates OPPRF protocol with other parties at the same

time. However, we use a single thread to perform the OPPRF subprotocol between

two parties.

We proposed a better “hashing to bin” scheme (see the full version of our paper)

than the state-of-art two-party PSI [KKRT16]. Specifically, our hashing scheme
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removes the stash bins which consume nontrivial cost of the protocol [KKRT16]

for sufficiently small sets. For example of 212 set size, we see that our protocol

requires 168 milliseconds compared to 211 milliseconds by [KKRT16], a difference

of 1.2×.

Results. Table 6.3 presents the running time of our PSI protocol in both LAN

and WAN setting. We report the running time for the total time and online phase.

The offline phase consists of all operations which do not depend on the input sets.

In the three-party case, our protocol supports the full corrupted majority. For

m = 220, our general 3-PSI protocol ( Section 4.5) in LAN setting costs 42 seconds

while the optimized protocol (Section 4.6.3) takes 26 seconds which is 1.6× faster.

When evaluating our 3-PSI in WAN setting, we found this optimized variant to

be 1.2× faster. This is primarily due to the need to wait for previous OPPRF

completed.

To address the possibility of at most t parties colluding, each party performs

OPPRF with min{t+ 1, n− 1} other parties. Therefore the cost of the protocol is

the same for t = n − 1 as t = n − 2. Hence, we report the protocol performance

with the n = 4 and t ∈ {2, 3} on the same row of the Table 6.3.

As we can see in the table 6.3, our protocol requires only 72 seconds to compute

a PSI of n = 5 parties for m = 220 elements. For the same set size, when increasing

the number of parties to n = 10, our total running time is 3 minutes and if n = 15

our protocol takes around 5 minutes. Figure 4.9 shows that our protocol’s cost is

linear in the size of number parties. When assuming only one corrupt party, our
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protocol takes only 64 seconds to compute PSI of 15 parties for m = 220 elements.

For the small set size of m = 212, the PSI protocol of n = 15 parties takes an total

time of 1.85 seconds with the online phase taking 1.32 seconds. We find that our

protocol also scales to large input sets (m = 224) with n ∈ {3, 4, 5} participants.

Table 4.5 reports the numerical communication costs of our implementation.

The protocol is asymmetric with respect to the leader P1 and other parties. Be-

cause the leader plays the role of receiver in most OPPRFs, the majority of his

communication costs can be done in an offline phase. Hence we report the com-

munication costs of the clients, which reflects the online cost of the protocol. For

the small set size of m = 212, only 3.28MB communication was required in 3-PSI

protocol on the client’s sides. The communication complexity of our protocols is

O(mtλ) bits. Thus, our protocol requires gigabytes of communication for a large

set size (m ∈ {220, 224}). Concretely, for the large input set m = 224, our 3-PSI

protocol uses 14.8GB of communication, roughly 0.88KB per item.
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Chapter 5: Private Set Union

Scalable Private Set Union from Symmetric-Key Techniques by Vladimir

Kolesnikov, Mike Rosulek, Ni Trieu, Xiao Wang in Asiacrypt [KRTW19]

We present a new efficient protocol for computing private set union (PSU). Here

two semi-honest parties, each holding a dataset of known size (or of a known upper

bound), wish to compute the union of their sets without revealing anything else

to either party. Our protocol is in the OT hybrid model. Beyond OT extension,

it is fully based on symmetric-key primitives. We motivate the PSU primitive by

its direct application to network security and other areas.

At the technical core of our PSU construction is the reverse private membership

test (RPMT) protocol. In RPMT, the sender with input x∗ interacts with a receiver

holding a set X. As a result, the receiver learns (only) the bit indicating whether

x∗ ∈ X, while the sender learns nothing about the set X. (Previous similar

protocols provide output to the opposite party, hence the term “reverse” private

membership.) We believe our RPMT abstraction and constructions may be a

building block in other applications as well.

We demonstrate the practicality of our proposed protocol with an implementa-

tion. For input sets of size 220 and using a single thread, our protocol requires 238

seconds to securely compute the set union, regardless of the bit length of the items.

Our protocol is amenable to parallelization. Increasing the number of threads from
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1 to 32, our protocol requires only 13.1 seconds, a factor of 18.25× improvement.

To the best of our knowledge, ours is the first protocol that reports on large-

size experiments, makes code available, and avoids extensive use of computationally

expensive public-key operations. (No PSU code is publicly available for prior work,

and the only prior symmetric-key-based work reports on small experiments and

focuses on the simpler 3-party, 1-corruption setting.) Our work improves reported

PSU state of the art by factor up to 7, 600× for large instances.

5.1 Introduction

Private set union (PSU) is a special case of secure two-party computation. PSU

allows two parties holding sets X and Y respectively, to compute the union X∪Y ,

without revealing anything else, namely what are the items in the intersection of

X and Y .

5.1.1 Motivation

PSU (like the well-researched private set intersection, PSI) has numerous appli-

cations in practice, and tailored efficient solutions are highly desirable. Consider

the following use cases. (We note that these use cases cover a wide range of PSU

settings, such as multi-party or shared-output PSU. Our work does not address

all of the settings, of course, but provides a building block and a baseline for the

entire research direction.)
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Cyber risk assessment and management via joint IP blacklists and joint vul-

nerability data. As noted in [LV04, HLS+16], organizations aim to optimize their

security updates to minimize vulnerabilities in their infrastructure. Crucial role

in the above is played by joint lists of blacklisted IP addresses, characteristic net-

work traces and other associated data, as well as joint lists of data points reported

by vulnerability scanners. At the same time, organizations are understandably

reluctant to reveal details pertaining to their current or past attacks or sensitive

network data. As convincingly argued in [HLS+16], the use of MPC in comput-

ing set unions of the above data sets will mitigate the organizations’ concerns.

[HLS+16] implements the computation of such set union and related data aggre-

gation as generic MPC in the VIFF framework. As noted by the authors, the

major performance bottleneck in their work is private computation of set union.

Our tailored PSU algorithms will be applicable to this computation as the main

building block.

More generally, privacy-preserving data aggregation is a well-appreciated goal

in the network security and other communities. For example, SEPIA [BSMD10]

is a library aimed to optimize generic MPC to securely and in real-time compute

event correlation and aggregation of network traffic statistics. Our PSU protocol

can potentially be helpful in that setting too.

Other applications and use cases. Imagine two Internet providers considering

a merger, and they would like to calculate how efficient the resulting joint network

would be without revealing the information of their existing networks [BS05]. An-

other application of combining set-intersection and set-union is the following sce-
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nario discussed in [KS05]. A social services organization wants to determine the

list of cancer patients who are on welfare. Some patients may have cancer treat-

ment at multiple hospitals. By using a private set union protocol, the union of

each hospital’s lists of cancer patients can be computed (while removing duplicate

patients without leaking the details of the patients), then a secure set intersection

operation between the resulting union and the welfare rolls can be performed.

More generally, PSU is an essential building block for private DB supporting full

join. Suppose there are two tables owned by two principals, say DMV (Department

of Motor Vehicles) and SSA (Social Security Administration). With a PSU-based

implementation, a query such as

SELECT ssn, dob

FROM dmv db FULL JOIN ssa db

ON dmv db.ssn = ssa db.ssn WHERE dob ≥ Jan 1, 1980

will allow the players to learn the two columns of the union, but not learn whether

the other player has the matching record.

Malicious model is of course the ultimate goal in this line of research. At

the same time, we believe semi-honest guarantee is sufficient in many scenarios.

Further, our work may serve as a stepping stone to the malicious-secure solution

where it is required. We believe that our performance improvement of four orders of

magnitude is surprising for a reasonably researched problem, and sets the baseline

for the PSU performance.
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5.1.2 Contribution

Over the last decade, there has been a significant amount of work on private set

intersection [DKT10, DT10, ADT11, HEK12, DCW13, PSZ14, PSZ18, KKRT16,

CDJ16, KMP+17, RR17a, CLR17, HV17, CCS18, FNO18, CO18]. However, there

has been little work on PSU, with current PSU state-of-the-art not scalable for

big data. Despite similarities between the two functionalities, many effective PSI

techniques do not directly apply to PSU. We give a brief discussion about the

unsuitability for PSU of several popular PSI techniques in Section 5.4.4 as well as

throughout the paper.

We design a truly scalable PSU protocol, building on newly developed building

blocks. In detail, our contribution can be summarized as follows:

1. We identify that existing fast private membership tests, used in leading

PSI protocols are not immediately applicable for computing PSU (cf. Sec-

tion 5.2.1), and a richer PMT of [CO18] carries 125× performance penalty

(cf. Section 5.1.3). We propose a new building block reverse private mem-

bership test (PMT) in Section 5.3. We present an efficient instantiation of

this building block, which serves as the basis of our symmetric-key based

PSU protocol.

2. We apply the bucketing technique to further reduce the computation and

communication overhead. We identify and overcome several new challenges

unique to bucketing in the context of PSU (but not PSI). Details can be

found in Section 5.4.
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3. Integrating the above two components, we build a truly scalable system for

PSU computation that is three orders of magnitude faster than the current

reported performance for large two-party PSU instances. Specifically, we are

≈ 7,600× faster than [DC17], which is the current best reported numbers for

larger sets of 1 million elements. [BA12] consider an easier setting with three

parties and one corruption. Although our protocol works in a stronger model

than [BA12], we are still 30× faster in terms of running time on sets of 212

elements and have 100 − 125× smaller communication (cf. Table 5.3). Our

protocol evaluates PSU of two million-element datasets in about a minute

on WAN and 13 seconds on a LAN.

4. Our implementation is released on Github: https://github.com/

osu-crypto/PSU. To our knowledge, this will be the first publicly available

PSU implementation.

5.1.3 Related Work

We start by reviewing previous PSU protocols, with particular emphasis on the

semi-honest model.

Kissner and Song [KS05]. To our knowledge, the first PSU protocol was

proposed by Kissner and Song [KS05]. The PSU of [KS05] is based on polynomial

representations and additively homomorphic encryption (AHE). The core idea of

their protocol is that if the sets X (respectively, Y ) is represented as a polynomial

f (respectively, g) whose roots are the set’s elements, then the polynomial repre-

https://github.com/osu-crypto/PSU
https://github.com/osu-crypto/PSU
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Protocol Comm. (bits) Comp. [#Ops symm/pub-key]
[KS05] O(κ3n2) O(n2) pub-key
[Fri07] O(κn) O(n log log(n)) pub-key
[BA12] O(κ`n log(n)) O(n` log(n)) symm
[DC17] O(κλn) O(λn) pub-key
Ours O(κn log(n)) O(n log(n)) symm

Table 5.1: Asymptotic communication (bits) and computation costs of two-party
PSU protocols in the semi-honest setting. Pub-key: public-key operations; symm:
symmetric cryptographic operations. n is the size of the parties’ input sets. ` is the
bit-length item. λ is statistical security parameters. In [BA12] and our protocol,
κ = 128 is computational security parameter, while κ = 2048 is the public key
length in other protocols. We ignore the pub-key cost of κ base OTs.

sentation of the union X ∪ Y is f × g. An important property is that an item x is

in the set X if and only if f(x) = 0. Consequently, for each item e that appears in

either set X or Y , it holds that (f × g)(e) = f(e)× g(e) = 0. The players compute

the polynomial f × g under AHE, and figure out the set of elements based on a

procedure called “element reduction”, which can reduce the degree of the roots.

Frikken [Fri07]. Relying on the polynomial representation, Frikken [Fri07]

proposed a faster PSU protocol with linear communication complexity in the size

of the dataset. At the high level, it proceeds as follows. Suppose that E(f)

is an encrypted polynomial representation for the set X, a tuple of the form

(xE(f(x)), E(f(x))) achieves the specific property that this tuple will be (0; 0)

if x ∈ X. In other words, x 6∈ X can be recovered from the decrypted tuple values.

Therefore, instead of computing the encrypted f × g in [KS05], Bob just computes

the above tuples after receiving the encrypted polynomial representation E(f) from

Alice, and sends them back to Alice in random order. Alice now decrypts the tu-
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ples and learns the value that is not in the intersection. The work of Frikken [Fri07]

requires O(nκ) communication, where n is the size of the parties’ input sets and

κ is the length of public-key/ciphertext. Computational cost of generating each

tuple is O(n), thus this protocol requires O(n2) computation. Moreover, their

protocol [Fri07] is expensive due to the multi-point evaluation on the encrypted

polynomial, which requires the depth of the arithmetic circuit (leveled fully homo-

morphic encryption) to be logarithm of the input set size. The authors claimed

that the computation of their protocol can be reduced to O(n log log(n)) by using

the bucketing technique with minor modifications to their protocol, but it is not

clear how to modify it. Indeed, using bucketing is quite tricky for PSU until our

work. Based on the polynomial representation, Hazay and Nissim [HN12] extended

the Frikken’s protocol in the presence of malicious adversaries.

Blanton and Aguiar [BA12]. In 2012, Blanton and Aguiar [BA12] proposed

a faster PSU protocol based on oblivious sorting and generic MPC protocols. The

core idea of their protocol consists of combining the input sets into a new set,

then sorting the resulting set, and comparing adjacent items of the sorted set in

order to eliminate duplicates. They focus on constructing the circuit for PSU (and

several other set operations) and relegate its evaluation to generic protocols. Their

paper provides experimental results on small input set in a three-party and honest

majority setting for 32−bit sized elements. Their largest experiment, n ≤ 211,

runs in 25 seconds; our n ≤ 212 experiment on larger element sizes runs in 1.42

seconds. Importantly, they run the experiments in the three-party setting, where

evaluation is much faster as wire secrets can be 1-bit long.
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We sketch approximate communication cost of their two-party garbled-circuit-

based protocol based on state-of-the-art OT extension and half gates [ZRE15].

Oblivious sorting of 222 elements per player involves sorting a 223 array. Consider-

ing 32-bit elements, such 2PC will require approximately 23 ·(223) ·(32+32) ·256 =

3, 161, 095, 929, 856 bits = 395 GB. Here 256 is the half-gates garbled table size and

32 is the element size. Subsequent duplicate elimination will cost approximately

the same as oblivious sort, so total communication cost is ≈ 790GB. Considering

larger element size, say, 128 bits, results in the corresponding 4× cost increase,

bringing total to ≈ 3.1TB. Transferring 3TB over a 400Mbps WAN will take

3·8·106

400
= 60000 seconds = 16.67 hours. For comparison, our protocol for this size

runs in 250 seconds, a 240× improvement.

[BA12] should perhaps be seen as an improvement over current public key-

based protocols. As discussed above, our tailored solution outperforms [BA12] by

a large factor even in the setting that is the most unfavorable for us. Because

there is no reported data on the performance of [BA12] on larger set sizes and no

existing generic MPC/2PC system supports large circuits generated by [BA12], we

use calculated numbers in our comparison to [BA12] in Table 5.3.

Davidson and Cid [DC17]. Recently, Davidson and Cid [DC17] proposed an

efficient protocol based on an encrypted Bloom filter and additively homomorphic

encryption (AHE). In the [DC17] protocol, the receiver represents its input set Y

using Bloom Filter (BF) with k hash functions, and inverts this filter by flipping

the bit value of each entry. It then encrypts the inverted Bloom filter by using an

IND-CPA secure AHE scheme, and sends it to the sender. For each item x of its
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input set X, the sender uses the k hash functions to retrieve k encrypted BF entries

corresponding to x. He then uses AHE homomorphism to sum up under encryption

the k retrieved ciphertexts. Let c be the obtained (AHE-encrypted) sum. The

sender sends (AHE-encrypted) pairs {cx, c} to receiver. Receiver decrypts them

and is able to obtain x iff c 6= 0. Indeed, if x ∈ Y , all k entries of x are not

set in the inverted BF, resulting in c = 0. Therefore, the receiver only obtains

X \ Y , from which it computes X ∪ Y . [DC17] requires O(κλn) communication

and O(λn) modular exponentiations, where λ is the statistical security parameters,

and κ is the length of public-key/ciphertext, which is in the range 1024-2048 due to

their use of public-key primitives. In concrete terms, encrypted BF for the set size

n = 220 requires 8.05 GB and 16.1 GB when using a κ = 1024 bit and κ = 2048

bit key length, respectively.

Other related work. We note that recent work [CO18] proposed private

membership test with shared output, which can be used to instantiate our reverse

private membership test. Our RPMT is much faster. For specific parameters used

in our work (bucket size 61, bit length 128), [CO18] requires 80KB communication

per test while our RPMT construction only needs 0.64KB, a 125× improvement

in terms of communication. In addition, our construction requires 140× fewer

symmetric-key operations than [CO18]. Because we work with small bucket sizes,

our polynomial-based RPMT is fast computationally as well.

Outsourcing PSU was considered in the work of Canetti et al. [CPPT14]. In

this problem, users outsource their encrypted data and computation to an un-

trusted cloud server, while keeping their data private. The main purpose is to
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Parameters: A set size n; two parties: sender S and receiver R

Functionality:

• Wait for an input x∗ ∈ {0, 1}∗ from sender S, and an input X =
{x1, x2, . . . , xn} ⊆ {0, 1}∗ from receiver R

• Give the receiver R output 1 if x∗ ∈ X and 0 otherwise.

Figure 5.1: Reverse Private Membership Test Functionality Fnrpmt.

minimize the computational overhead of the users by utilizing the powerful re-

sources of the cloud server.

Table 5.1 provides a brief comparison to the prior highest-performing PSU

protocols in the semi-honest setting. We emphasize that public-key operations are

the workhorse of all prior work, while we do only κ = 128 such operations to initiate

OT extension. This is the main reason for 7,600× performance improvement over

prior work we observe. We report in detail the performance results and comparisons

in Section 6.4.

5.2 Overview of Our Results & Techniques

We start with a special case. Suppose that the sender has only one item y in its

set Y and the receiver holding the set X will receive the resulting union {y} ∪X.

The protocol must satisfy the following:

(1) if y 6∈ X, the receiver is allowed to learn y as it is implied by the output.

The sender learns nothing.

(2) if y ∈ X, the receiver knows that y ∈ X (implied by the output), but not
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allowed to learn which is the sender’s item y. Sender learns nothing.

Receiver learns which of the cases (1) or (2) occurs. Based on the case, the

sender’s item y can be conditionally sent to the receiver using a “one-sided” OT,

a version of OT that requires transfer of a single encrypted secret, rather than

the usual transfer of two encrypted secrets, exactly one of which the receiver can

decrypt.

5.2.1 Reverse Private Membership Test (RPMT)

We formalize the above basic functionality as the RPMT functionality (cf. Fig-

ure 5.1) and design a corresponding tailored efficient protocol, which we believe to

be of independent interest. RPMT is related to the traditional Private Member-

ship Test (PMT) [PSZ14], which is a two-party protocol in which the party with

input y learns whether or not its item is in the input set X of other party (who

learns nothing). In a RPMT, the output is given to the opposite party, i.e. the

party holding the set X will learn whether y ∈ X (and nothing else). We formally

describe the ideal RPMT functionality in Figure 5.1.

We emphasize that, unlike PSI, use of PMT is not very natural for PSU. This

is because the PMT output receiver holds an element, and gets the answer in

plaintext whether the element belongs to a set held by the sender. This is implied

by the PSI output, and hence can be used there. However, this is extra information

in the PSU functionality. We don’t know of a natural way to efficiently use PMT

with PSU.
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This seemingly simple functionality adjustment (PMT→RPMT) doesn’t seem

to be fixable by a small tweak of PMT. This is because the underlying primitive

used to implement fast PMT [KKRT16] is a variant of OT extension, and the role

of OT receiver naturally belongs to the player with a single-element input y; it is

not clear how to amend the protocol to allow (only) the other player to receive the

output.

The basic idea for our RPMT is to have the receiver represent a dataset

X as a polynomial P̃ (x) whose roots are its elements, and send the (plaintext)

coefficients of the polynomial P (x) = P̃ (x) + s to the other party, where s is a

secret value chosen at random by the receiver. The sender evaluates the received

polynomial on y and obtains P (y) = s′. It is easy to see that s′ = s if y ∈ X,

i.e. y is a root of P̃ (x). At this point, the receiver could compare s′ and s in the

clear and learn the output of RPMT. However, if y 6∈ X, the value P (y) may leak

partial information about y. To prevent this, instead of the receiver sending s to

the sender, the parties perform a private equality test/matching (PM) to determine

whether two strings s and s′ are equal. The PM guarantees that the sender learns

nothing about whether y ∈ X while the polynomial presentation allows receiver

to determine whether y ∈ X but not the value of y (beyond what is implied by

y ∈? X).

We note that full PM is actually not required, and a weaker and slightly efficient

subprotocol is sufficient. For uninterrupted flow, we return to this observation in

Sect. 5.2.2.

This brief overview of RPMT ignores an important security issue. In particular,
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suppose y ∈ X, so the sender can evaluate P (y) = s. Then he/she can compute

P (·) − s: a polynomial whose roots are all of the elements of X! To address

this issue, the parties invoke oblivious PRF (OPRF) on their inputs, and use the

OPRF’s outputs for the polynomial interpolation/evaluation. Recall that OPRF is

a 2-party protocol in which the OPRF sender learns a PRF key k and the OPRF

receiver learns Fk(z), where F is a pseudorandom function (PRF) and z is the

receiver’s input. In RPMT, the RPMT sender acts as the OPRF receiver to receive

Fk(y) and the RPMT receiver acts as the OPRF sender to obtain the PRF key k.

Now, the receiver interpolates a polynomial P over points1 {(x, s⊕Fk(x))} ∀x ∈ X,

and sends the coefficients of this polynomial to the other party, who evaluates it on

y, and outputs P (y)⊕ Fk(y). Thanks to OPRF, the important properties needed

for RPMT still hold: (i) Fk(y) = Fk(x) if x = y. Therefore, the sender obtains the

secret value s chosen by the receiver; (ii) even if y ∈ X, other elements of X can

no longer be inferred from P (·) and P (y). This is intended to make finding roots

of P (·)−P (y) useless to the sender. Moreover, to learn X, the sender has to know

its OPRF value Fk(x), which is not possible because of the OPRF guarantees. A

detailed overview of the RPMT protocol is presented in Section 5.3.

We note that RPMT and OPRF are fast cryptographic tools. Recently,

Kolesnikov et al. [KKRT16] proposed an efficient protocol which performs many

OPRF or PM with amortized cost of 5 µs. Therefore, the main computation cost

of our RPMT is the multiplication/evaluation of the polynomial, which requires

1Of course, x ∈ {0, 1}∗ needs to be “hashed down” to an element of the field we are working
with. This can be done,e.g., by applying a collision resistant hash function. For simplicity, here
we mention, but don’t formalize this step.
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{A,B} ∩ {C,D} = {} {A,B,C} ∩ {C,D} = {C}

B A
⊥⊥

DC
⊥⊥

B A
C⊥

DC
⊥⊥

A 0RPMT

B 0. . .

⊥ 1. . .

⊥ 1. . .

{A,⊥} AOT
{B,⊥} B. . .

{⊥,⊥} ⊥. . .

{⊥,⊥} ⊥. . .

A 0RPMT

B 0. . .

C 1. . .

⊥ 1. . .

{A,⊥} AOT
{B,⊥} B. . .

{C,⊥} ⊥. . .

{⊥,⊥} ⊥. . .

Figure 5.2: Illustration of the main idea behind our protocol: using RPMT and
oblivious transfer to perform PSU on a sample bin. The left-hand side illustrates
that the sender’s bin contains 2 real items {A,B} and the receiver’s bin contains
2 real items {C,D}, these sets are disjointed. The right-hand side shows that the
sender’s bin contains 3 real items {A,B,C} and the receiver’s bin contains 2 real
items {C,D}, these sets have a common item C. An item ⊥ denotes the global
item known by both parties.

time O(n log2(n)) using FFT or O(n2) using a more straight-forward algorithm.

This is expensive for large set size n = |X|. We avoid the need to work with

high-degree polynomials by hashing/bucketing (see below). The communication

overhead is small and is equal to O(n).

We can summarize the above gadget for the simple case of PSU (union of a set

X and a single element y) as follows: using RPMT on X and y, the receiver learns

a bit b ∈ {0, 1} indicating whether y ∈ X. Next, the parties perform one-sided
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OT to allow receiver obliviously obtain y if b = 0 (i.e. y 6∈ X), nothing otherwise.

5.2.2 An Efficiency Optimization

Going back to the discussion of our RPMT protocol in the previous section, while

it uses a PM protocol to compare the output of the polynomial, this is in fact

overkill for our application to PSU.

Indeed, suppose the sender instead just sends the output of the polynomial s′

in the clear to the receiver. Consider the two cases. First, if y ∈ X, we have

s′ = s, so no information about y would be leaked, as desired. In the other case

that y 6∈ X, we want (in the overall PSU protocol) the receiver to learn y anyway!

So even if s′ leaks information about y, this is fine. Hence, for the purpose of PSU,

our protocol can conclude by a plaintext comparison, where the sender sends s′ to

the receiver.

As it turns out, this optimization, while elegant, is not substantial in terms of

overall performance, providing 3 − 5% improvement in running time and ∼10%

improvement in communication. This can be seen by sketching relative costs of

our subprotocols, and is also supported by our experiments. Because of this, we

chose to present the paper in terms of the more general and conceptually simpler

RPMT primitive.

However, we did formalize and prove secure the improved protocol. It is pre-

sented, together with a proof of security and experimental results in the full version

of our paper. We feel that this presentation structure allows to focus our main
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presentation on the simpler primitives, while at the same time devote sufficient

attention to an interesting optimization.

5.2.3 General Case from RPMT

We now discuss how to extend the above approach to the general case of PSU with

|Y | > 1. The idea is natural: for each item y ∈ Y simply execute the above gadget

on y and X. As a result, the receiver obliviously obtains all items in Z ← Y \X

which directly allows him to learn the union X ∪ Y = X ∪ Z. However, this

approach requires n instances of RPMT and n instances of OT (here, we assume

that |X| = |Y | = n). This results in communication and computation complexity

of O(n2) and O(n2 log(n)), respectively. Therefore, this PSU construction is only

efficient when n is small. Our next trick is to use a hashing technique to overcome

this limitation.

At the high level, the idea is that the parties use a hashing scheme to assign their

items into bins, and then perform the quadratic-cost PSU on each bin efficiently.

By applying a balls-into-bins analysis and minimizing the overall cost, our hashing

scheme has O(n/ log n) bins, where each bin contains O(log n) items. We review

the hashing scheme in detail in Section 5.4.2. This optimization reduces costs to

O(n log n) in communication and O(n log n log log n) in computation. However,

bucketing introduces a challenge specific to the PSU – the receiver learns addi-

tional information on the intersection items, namely, the bucket where the match

occurred/did not occur. Consider an example where the receiver’s first bin X1
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contains three items and the sender’s first bin contains y1. In our protocol, parties

perform RPMT on X1 and y1. Suppose y1 ∈ X, which means, because of bucket-

ing, that y1 ∈ X1. From RPMT output, the receiver learns that y1 ∈ X1, which

cannot be inferred from just the PSU output.

To address this issue, both parties add dummy items ⊥ into each of their bins

to fill them to their maximal size prior to executing RPMT on the bins. Then

even if the output of RPMT on (X1 ∪⊥) and y1 gives the receiver a bit b = 1 (i.e.

indicating that y1 ∈ X1), the receiver will not learn any information on y1 since y1

may be the dummy item ⊥. We note that this high-level description of the use of

dummy items hides some technical nuance, which is explained in detail in Section

5.4.

Figure 6.1 illustrates the main idea behind our protocol. It is easy to see

from the Figure 6.1 that the receiver’s view in both important cases (two bins are

disjoint or two bins have a common item) are exactly same. As noted above, each

bin must be padded with ⊥ to the maximum number of items expected in a bin.

In Figure 6.1, the maximum bin size is 4. Section 5.4 formally describes the full

construction of our PSU.

5.2.4 Efficiency

Our PSU protocol requires only O(κ) public-key operations to perform base OT

(which can run in the offline phase). In the online phase, our protocol consists

of O(n) OPRF instances, O(n) PM instances, and O(n) OT instances. These
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building blocks are based on symmetric-key operations, and can use the same base

OTs. In terms of communication, our protocol requires O(κn log(n)), where κ is

the computational security parameter.

Our protocol is 3-4 orders of magnitude faster than previous state-of-the art.

We present detailed performance analysis and comparisons in Section 6.4.

5.2.5 Using Padding to Hide Input Set Sizes

If desired, it is easy to add padding to our protocol so as to hide the actual sizes of

players input sets. This is done simply by setting the protocol parameters (number

of bins, maximal bin size) based on the known upper bound of set size. It is easy

to verify that this (higher parameter values) do not cause correctness or security

violations. Intuitively, players will process more bins with higher maximal bin

sizes, but fewer actual items. However, the number of actual items per bin is

hidden by our protocol.

5.3 Reverse Private Membership Test (RPMT)

We describe our efficient construction of Reverse Private Membership Test

(RPMT), which is a semi-honest secure protocol for the functionality specified

in Figure 5.1. Throughout the paper we use the notations κ, λ for the compu-

tational and statistical security parameters, respectively. Our RPMT protocol is

described in Figure 5.3. The formal protocol follows the intuition presented in the
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first part of Section 6.2. Polynomial arithmetic is done in field F(2σ) for some

appropriate σ. We discuss using smaller field size in Section 5.4.3.

RPMT protocol is presented in Figure 5.1. We next argue it computes Fnrpmt

correctly. Afterwards, we state and prove the security properties of the protocol.

Correctness. The main observation of OPRF is that the RPMT sender (acting

as OPRF’s receiver) obtains the output q∗ which is equal to qi, if x∗ = xi. In this

case, it is not hard to see that s∗ = P (h(x∗))⊕ q∗ = P (h(xi))⊕ q∗ = s. From the

Fpm-functionality, the receiver outputs 1. In case x∗ /∈ X, the OPRF functionality

gives the sender q∗ which is not in {qi | i ∈ [n]}, thus s∗ 6= s and the receiver gets

0 from the Fpm-functionality.

We remark that our RPMT protocol is correct except in case of a collision

P (h(x∗)) = P (h(xi)) for x∗ 6= xi, which occurs with probability is 2−σ. By setting

σ = λ+ log(n), a union bound shows probability of collision is negligible 2−λ.

Security. We now state and prove security properties of RPMT.

Theorem 13. The construction of Figure 5.3 securely implements functionality

Fnrpmt in the semi-honest model, given the OPRF and Private Equality Test prim-

itives defined in Figure 2.2, and Figure 2.3, respectively.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S re-

spectively, and argue the indistinguishability of the produced transcript from the

real execution.
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Corrupt Sender. SimS(x∗) simulates the view of corrupt S, which consists of

S’s randomness, input, output and received messages. SimS proceeds as follows.

It first chooses q′ ∈R {0, 1}σ, calls OPRF simulator SimSOPRF
(x∗, q′), and appends

its output to the view. We note that BaRK-OPRF is behaving the same as OPRF

with respect to the security guarantee needed for simulating this step, namely that

q∗ obtained in Step 1 is pseudorandom. This is the only direct use of BaRK-OPRF

in this protocol, and hence the rest of the argument made w.r.t. OPRF applies to

our instantiation as well.

SimS then simulates Step 3 as follows. It generates n random points (h′i, p
′
i) ∈R

({0, 1}σ, {0, 1}σ). SimS then interpolates the degree-n polynomial P over these

points {h′i, p′i} and appends its coefficients to the generated view.

Finally, to simulate Step 5, SimS runs simulator SimPM on input (s′ =

P (h(x∗))⊕ q′) and appends the output of SimPM to its output of the view.

We now argue that the output of SimS is indistinguishable from the real exe-

cution. For this, we formally show the simulation by proceeding the sequence of

hybrid transcripts T0, T1, T2, T3, where T0 is real view of S, and T3 is the output of

SimS .

Hybrid 1. Let T1 be the same as T0, except the OPRF execution is replaced

with choosing a random q′ and running the simulator SimOPRF(x∗, q′). By the

OPRF/BaRK-OPRF pseudorandomness guarantee and the indistinguisha-

bility of the output of SimSOPRF
, it is easy to see that T0 and T1 are indistin-

guishable.
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Hybrid 2. Let T2 be the same as T1, except that the polynomial is interpo-

lated over points {h(xi), s⊕Fk(xi)}. Because k is unknown to S, the points

sampled by SimS and the points obtained from the real execution are indis-

tinguishable. As a consequence, the polynomial from the real execution can

be replaced with a degree-n polynomial P over points {h′i, p′i}. Thus, the

polynomial coefficients are indistinguishable.

Hybrid 3. Let T3 be the same as T2, except the PM execution is replaced with

running the simulator SimRPM
(s′). Because SimRPM

is guaranteed to produce

output indistinguishable from real execution, T3 and T2 are indistinguishable.

Corrupt Receiver. SimR(x1, ..., xn, out) simulates the view of corrupt R,

which consists of R’s randomness, input, output and received messages. SimR

proceeds as follows. It chooses a random k′ ∈r {0, 1}κ, calls OPRF simulator

SimSOPRF
(⊥, k′), and appends its output to the view. Finally, to simulate Step 5,

SimS runs simulator SimPM on input (k′, out) and appends the output of SimPM to

its output of the view.

The view generated by SimR in indistinguishable from a real view because of

the indistinguishability of the transcripts of the underlying simulators.

Communication Cost. Ignoring the fixed cost of base OTs for OT extension,

the PMT communication cost (prior to further optimizations discussed in Sec-

tion 5.4.3) includes:
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• OPRF in Step 1: ρ bits, where ρ is the width of the pseudorandom code

defined in Table 5.2 by referencing parameters from [KKRT16].

• Sending the coefficients of P in Step 3: (n+ 1)σ bits

• Fpm in Step 5: ρ+ λ bits

Therefore, the overall communication cost of our PMT protocol is

Φ(n) = 2ρ+ λ+ (n+ 1)σ (5.1)

5.4 Main Construction

We now present our main result, an application of our RPMT to PSU. The con-

struction closely follows the high-level overview presented in the second part of

Section 6.2. Recall, the RPMT functionality allows the receiver to learn one-bit

output indicating whether the sender’s item is in its (receiver’s) set, while keeping

this item secret (i.e. the receiver will not know which sender’s item is among its

set). The performance of our RPMT protocol is linear in the size of the receiver’s

set, resulting in a quadratic costs for PSU.

Next, in Section 5.4.1, we show how to use a hashing/bucketing technique to

overcome this limitation. At the high level, the idea is that each party maps their

items into bins using a public hash function. Each bin contains a small number of

items which allows the two parties to evaluate RPMT on the elements of each bin

separately.
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Let m denote the maximum sender’s bin size when mapping n items to β

bins with no (expected) overflow. Within each bin, the protocol requires (m + 1)

invocations of RPMT. Section 5.4.2 analyses hashing parameters to minimize the

overall cost of our PSU.

5.4.1 PSU Construction

As described above, in our PSU protocol we place players’ elements into β buckets

of maximum size m each.

We describe the main construction of PSU in Figure 5.4. Correctness of our

PSU protocol follows from the fact that the RPMT functionality gives the receiver

the zero-bit output if its set does not contain the sender’s item. In Step 6b, the

receiver obliviously receives that item from OT functionality.

We now state and prove security of our PSU construction.

Theorem 14. The construction of Figure 5.4 securely implements the Private Set

Union functionality Fn1,n2
psu of Figure 2.5 in the semi-honest model, given the OT

and Reverse Private Equality Test primitives defined in Figure 5.1.

Proof. We exhibit simulators SimS and SimR for simulating corrupt S and R re-

spectively, and argue the indistinguishability of the produced transcript from the

real execution.

Corrupt Sender. When employing the abstraction of the RPMT and OT

functionalities, simulating corrupt S is elementary. SimS(X) simulates the view of

corrupt S, which consists of S’s randomness, input, output and received messages.
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The simulator simulates an execution of the protocol in which S receives nothing

from the PTM and OT ideal functionality in Step 4. Thus, it is straightforward

to see that the simulation is perfect.

Corrupt Receiver. SimR(Y, Z) simulates the view of corrupt R, which con-

sists of R’s randomness, input, output and received messages. We will view SimR’s

input Z as the set Z = Y \X, i.e. the set of elements that X “brings to the union.”

SimR proceeds as follows.

SimR simulates protocol of Figure 5.4 bucket-by-bucket. Consider the i-th

bucket. Let Xi (respectively Yi, Zi) be the set of elements of X (respectively, Y, Z)

that are mapped to the i-th bucket. SimR pads Yi to m + 1 elements as is done

in Step 4. Now, SimR has all the information to simulate Step 6. SimR constructs

the sequence simulating when R discovers new elements in the union. This is an

m-element sequence S, where SimR puts |Zi| elements zi at randomly chosen slots,

and fills the remaining m− |Zi| elements of the sequence with ⊥.

SimR then goes through the elements of S. Consider the j-the such element

Sj. SimR sets outj = 0 if Sj = ⊥, and otherwise sets outj = 1. SimR invokes the

simulator of Frpmt with input (Yi, outj), and appends the output of the simulator

to its own output. This simulates Step 6a.

SimR proceeds by simulating Step 6b, as follows. SimR invokes the simulator of

OT with input (outj, Sj). This corresponds toR providing input outj and receiving

output Sj from OT. SimR appends the output of the simulator to its own output.

SimR proceeds simulating each of β bins and terminates. This completes the

description of the simulator.
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We now argue that the output of SimR is indistinguishable from the real ex-

ecution. This is easy to see. SimR’s reconstruction of how/when the elements of

Z = Y \ X are discovered by R is distributed identically to the real execution.

The remainder of the simulation refers to simulators of implementations of ideal

functionalities.

5.4.2 Hashing Parameters

A natural first attempt is to hash n items into n bins, where each bin will contain

O(1) items on average. If we could have O(1) items per bin in PSU, this would

result in O(n) total RPMT instances, a low cost. However, we must hide the actual

number of items in each bin, and hence all bins must be padded to an upper bound

m. Gonnet [Gon81] showed m = ln(n)
ln ln(n)

(1 + o(1)). The coefficient of little-o is not

specified in [Gon81]; Pinkas et al. [PSZ18] empirically determined the concrete m

given the number of bins β. In our case, n bins is not an optimal strategy. For

example, hashing n = 220 elements into n bins, bin size m = 20 is required to

ensure that overflow occurs with probability ≤ 2−40. As a result, for n = 220 our

PSU protocol performs 21n RPMT instances in total, which requires 228 OPRF

ciphertexts sent and received. We can do better.

In the following, we analyze the effect of the number of bins β and maximum

bin size m on the communication overhead of our protocol, and choose the best

parameters to minimize our cost. We recall that the overall communication cost
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of our PSU protocol is equal to βmΦ(m + 1) + βm(κ + σ), where Φ(m + 1) is

the RPMT communication cost specified in Equation (5.1). To guarantee that

mapping n items to β bins with no overflow, we compute the probability that

there exists a bin with more than m items:

Pr(∃bin with ≥ m items) ≤ β

n∑
m+1

(
n

i

)( 1

β

)i(
1− 1

β

)n−i
(5.2)

Bounding (5.2) to be negligible in the statistical security parameter λ = 240, we

obtain the required bin size m without overflow for a given n and β. To minimize

the overall communication cost, we choose β = O(n/ log n). According to standard

balls-and-bins argument, the maximum bin size m is O(log(n)). To determine the

coefficients in the big “O”, we first fix the number of bins with an initialization

value β = εn = 0.01n, evaluate Equation (5.2) to obtain the necessary m, and

calculate the required communication cost given β and m. In order to find “sweet

spot” for our communication cost, we increase the scale ε by 0.001 after each time.

We observe that our protocol yields the lowest communication when ε is in a range

[0.4, 0.6]. Figure 5.5 shows the result for n = 216: we choose β = εn = 0.058n and

require m = 60 to achieve 2−40 hashing failure probability. We also report the set

of our hashing parameters in Table 5.2.
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parameters set size n
& comm. 28 210 212 214 216 218 220 222

ρ 424 432 432 440 440 448 448 448
β/n 0.043 0.055 0.05 0.053 0.058 0.052 0.06 0.051
m 63 58 63 62 60 65 61 68

Comm. cost (MB) 0.39 1.81 7.84 33.43 141.78 602.20 2544.7 10748

Table 5.2: Hashing parameters for different set sizes n, and our PSU’s communi-
cation cost (MB). ρ is OT extension matrix width in OPRF (≈ number of bits
required per OPRF call) as reported in Table 1 [KKRT16], β is the number of
bins, m is max bin size PSU with n elements per party. Total PSU communication
reported in MB and excludes the fixed cost of base OTs for OT extension.

5.4.3 Discussion and Optimization

In our RPMT protocol described in Figure 5.3, the receiver computes a polynomial

of degree n with the field of F(2σ), where σ = λ + log(n). With hash-to-bin

technique used in PSU, we are able to reduce the degree from n to m = O(log(n)),

which avoids an expensive computation at the cost of manipulating polynomials

with high degree. However, we increase the field size by 10%− 12%.

Recall that our PSU protocol requires β(m+ 1) RPMT instances in total. For

each RPMT protocol, its correctness is violated when a collision event occurs:

P (h(xi)) = P (h(yj)) for xi 6= yj. To yield collision probability 2λ over all bins,

which is suited for most applications, the size of qi values is σ = λ+log(β(m+1)2).

For example, for n = 220, we use the polynomial field size F(268).

Polynomials with Dummy Points In Step 4, Figure 5.4, receiver pads each

bin with one special item ⊥ and additional different dummies to the maximum bin
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size m + 1. This padding serves the purpose of hiding the number of items that

were mapped to a specific bin, which would leak some information about the input

set. In RPMT protocol (Step 2, Figure 5.3), the receiver generates the polynomial

over points {h(yi), s⊕ qi} where some of qi are the OPRF of the dummy items di.

Therefore, we simply replace these qi = Fk(di) by random values.

Another optimization, inspired by [KMP+17], is that the receiver computes

P (x) by first interpolating the polynomial over the non-dummy items only. That is,

receiver interpolates P0 over m′ ≤ m points {h(yi), s⊕Fk(yi)}, and also computes

P1(x) =
∏m′

i=1(x−h(yi)) over m′ roots h(yi), where yi are real items. Then receiver

chooses a random polynomial Pr(x) of degree ((m+1)−m′); and computes P (x) =

P0(x) + P1(x)Pr(x). It is easy to see that P (h(xi)) = s⊕ Fk(xi), ∀xi ∈ X. Using

hashing parameters from Table 5.2, the expected value of m′ is only 18 for n = 218,

while the worst-case m = 65. This optimization reduces the cost of expensive

polynomial generation (by approximately 200% in our implementation).

Relaxing RPMT Finally, as discussed in Section 6.2, the use of full-fledged

RPMT for PSU is slightly overkill. It would suffice to use an RPMT protocol

which leaked some information about the sender’s item (in the case that x∗ 6∈ X),

since the PSU protocol will release that value anyway. In the full version of our

paper, we describe a simple change to the RPMT protocol that remains secure

in the context of our PSU protocol. Basically, instead of using PM to compare

polynomial outputs, the sender just sends it polynomial output in the clear. This is

safe in the context of PSU since the PSU simulator will have access to the sender’s
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RPMT input x∗ whenever the polynomial output leaks information about x∗.

5.4.4 Discussion: Difficulties in Applying Other PSI Techniques

In addition to the optimizations mentioned above, we also explored other com-

monly used techniques developed in the context of PSI [FNP04, KKRT16,

KMP+17, CLR17, HV17]. Interestingly, we found that many standard techniques

for PSI do not directly work for our PSU paradigm, despite the apparent similar-

ity of the two problems. In the following, we will discuss PSU-specific obstacles

in applying these techniques. The reader may safely skip this section on the first

reading as we discuss here only techniques that we did not use in our protocol.

Cuckoo hashing This hashing scheme was introduced by Pagh and

Rodler [PR04]. It is the standard hashing scheme in current PSI protocols. At the

high level, the receiver uses two (optionally, more) public hash functions h1, h2 to

store its item in one of the bins {h1(x), h2(x)}. The hashing process uses eviction

and the choice of which of the bins is used depends on the entire set. Using the

same hash functions and simple hashing, the sender maps its item y into both bins

{h1(y), h2(y)} (i.e., item y appears twice in the hash table). Then the parties eval-

uate PSI bin-by-bin. This is efficient since the receiver has only one item per bin.

This hashing scheme avoids a quadratic-cost PSI within a bin.

Unfortunately, this hashing scheme (and the corresponding performance im-

provement) does not immediately fit in the PSU case. The reason is that the
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receiver may learn the Cuckoo hash positions of the sender’s items, which may

reveal information about sender’s entire input. Concretely, suppose that in our

protocol the sender uses Cuckoo hashing to map its item x into bin h1(x). If

x 6∈ Y , the receiver will learn which bin x is mapped to. As noted above, the

bin storing x depends on the whole input set of the sender and this leaks some

information about the party input set that cannot be simulated.

Phasing Permutation-based hashing (phasing) was introduced by Arbitman et

al. [ANS10] to reduce the bit length of the items that are mapped to bins (in

our PSU, this would help reduce the polynomial field size). Phasing was used in

[PSSZ15, HV17, RR17b, CLR17] to improve PSI performance when input items

has short bit length. The idea is to view each item x as two parts: first log(β)

bits used to define the bin to which the item is mapped, and the last bits used as

a representation to store the item in the bin.

Concretely, the item x can be presented as x = xL|xR, where xL has log(β)

bit-length. The item x is mapped into bin xL ⊕ f(xR), where f is a random

function that maps arbitrary strings to a range of [0, β]. That bin will store xR as

a representative of x. Clearly, xR has log(β) bits shorter than the original item x.

This permutation-based hashing technique achieves significant savings, especially

when the original item x has small length (e.g. 32 bits or 64 bits). For instance,

assume that the item x has 32-bit length, the set size is n = 220. Then bin elements

are only 17 bits long, instead of 32 bits. As a result, we might hope to use the

polynomial field size of only F(217) in RPMT, yielding a significant improvement.
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Unfortunately, this general phasing technique does not yield any performance

benefit in our PSU paradigm. The underlying reason is that the items in each

bin are first given as input to an OPRF for that bin, however the state-of-the-

art OPRF protocol that we use ([KKRT16]) is insensitive to the item length. It

is only the OPRF output length that determines the field size for polynomial

interpolation. Since the OPRF outputs are random, their length must be chosen

to avoid collisions with probability 1− 2−λ.

5.5 Implementation

Our protocol requires the receiver to generate a polynomial of degree m, and the

sender to evaluate it on one point, where m is the maximum bin size. Since the

degree m = O(log(n)) of the polynomial is relatively small, we use the straight-

forward Lagrange interpolation and evaluation algorithm which requires O(m2)

field operations. As parties use the bit-string output of the OPRF as input to

the polynomial operations, it is natural to interpolate and evaluate the polyno-

mial over GF (2σ). Our polynomial implementation uses the NTL library [Sho] with

GMP library and GF2X [GBZT] library installed for speeding up the running time.

Inspired by Huang et al. [HEKM11], we applied pipelining optimization when

the receiver sending all polynomials to the sender. In more detail, we find that

by sending polynomial coefficients for 28 bins in a batch to the sender, we can

minimize the overall wall-clock time of the execution.

As detailed in Section 6.2, our PSU protocol builds on a specific OPRF vari-
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ant [KKRT16] and OT extension. We do κ = 128 Naor-Pinkas OTs [NP01]. We

use the source code (OPRF and OT) from [KKRT16, Rin]. Our complete imple-

mentation will freely available on GitHub.

We implement our protocol in C++, and run our protocol on a single Intel

Xeon with 2.30GHz and 256GB RAM. We emulate the network by using Linux

tc command. In the following, we compare our protocol to the state-of-the-art

PSU protocol [DC17] which provides empirical experiments for a larger set, and

the work of [BA12] which reports experimental numbers for PSU of small sets

n ≤ 212). Additionally, we demonstrate the scalability and parallelizability of our

protocol by evaluating it on sets of up to 222 128-bit items each.

All comparisons are total running time. We note that our protocols are very

amenable to pre-computation (by precomputing and pre-sending OT extension and

OPRF matrices).

5.5.1 Comparison with Prior Work

Since implementation of [DC17] and [BA12] are not publicly available, we use their

reported experimental numbers. We perform a comparison on the range of set sizes

n = {28, 210, 212, 214, 216, 218} to match the parameters used in [DC17, Table 3&4]

and [BA12, Table 3]. [DC17] ran experiments on Intel Xeon 3.30GHz 256GB

RAM and 10Gbps LAN; we use a similar (1.32× slower) machine as reported

above and same LAN. [BA12] reports running on 2.4GHz AMD Opteron.
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Protocol
Bit key Cryptographic Set size n
length strength 28 210 212 214 216 218

Time

[DC17]
1024 Legacy 11.78 44.73 175.7 702.4 2836.5 11341.2
2048 112 78.02 312.44 1233.59 4952.94 19881.51 79272.48

[BA12] 128 128 2.41 11.88 24.88 − − −

Ours
128 128 0.57 0.66 0.83 1.15 2.65 10.42

Speedup 4× 18× 30× 4306× 7502× 7607×

Comm.

[DC17]
1024 Legacy 2.83 11.32 45.28 181.12 724.49 2897.97
2048 112 4.06 16.25 65.01 260.04 1040.18 4160.74

[BA12] 128 128 75.5 369.1 1744.83 8053.06 36507.22 163208.76

Ours
128 128 0.45 2.05 8.48 34.98 144.65 652.09

Speedup 9.02× 7.92× 7.66× 7.43× 7.19× 6.38×

Table 5.3: Comparison of total runtime (in seconds) and communication (in MB)
between our protocol, [DC17] and [BA12]. Both parties have n 128-bit elements
as input, except [BA12] running time is based on 32-bit elements. [DC17] imple-
mentation is in Go, using 8 threads. Our implementation is in C++, 8 threads.
[DC17] and us use fast emulated LAN (10Gbps, 0.02ms RTT). Cryptographic
strength refers to the computational security of the protocol, according to NIST
recommendations. [BA12] runtime is taken from their 3-party experiments, and
[BA12] communication is calculated by us for 2PC and 128-bit elements. Best
results are marked in bold.

Runtime Comparison In the [DC17] protocol, a Bloom filter (BF) of 44n el-

ements is used to yield the false-positive probability 2−30. Each element requires

expensive encryption, decryption and further manipulation under an additively-

homomorphic encryption (AHE).

We report detailed comparisons in Table 5.3, and here we highlight some num-

bers. Our protocol runs in 0.94 seconds for n = 210, while [BA12] requires 11.88

seconds, a factor of 18× improvement; and [DC17] requires 312.44 seconds with

2048-bit key length (which corresponds to the security level considered in our pro-

tocol), a factor of 332× improvement. As the set size n increases, [DC17] runs
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correspondingly slower. When increasing the set size to n = 218, [DC17]’s overall

running time is 79, 272.48 seconds while ours is only 10.42 seconds.

This is a 7607× improvement in running time compared to [DC17] (2048-bit key

length). A higher improvement factor as we move to higher set size likely indicates

that non-protocol-essential system overheads take a higher fraction of resources in

smaller set size executions in our protocol. In Section 5.5.2, we demonstrate the

scalability and parallelizability of our protocol.

Bandwidth Comparison The receiver in [DC17] sends a large encrypted BF.

For n = 220, BF size is 8.05 GB and 16.1 GB when encrypted with 1024-bit

and 2048-bit key, respectively. [BA12] relies on generic 2PC/MPC to run their

protocol. We sketch approximate communication cost of their protocol in the two-

party setting based on state-of-the-art OT extension and half gates (cf. discus-

sion in Section 5.1.3). Oblivious sorting of n elements per party involves sorting

an array of size 2n. Considering `-bit elements, this will require approximately

2n · log(2n) · 2` · 256 bit. Here 256 is the half-gates garbled table size. The com-

munication complexity of the duplicate elimination [BA12] costs approximately

the same as oblivious sort. For the bandwidth comparison, we only report the

[BA12]’s communication cost of oblivious sorting and duplicate elimination, which

is in favor of their protocol.

We compare bandwidth for the set sizes explored in [DC17], and summarize

their and our results in Table 5.3. The communication cost of our protocol is

significantly less than that of the prior work. Concretely, for n = 218, our protocol
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requires 652.09 MB of communication, a 6.38 × improvement. For very small set

size n = 28, our protocol requires only 0.45 MB while [DC17] needs 4.06 MB and

[BA12] requires at least 75.5 MB.

Correctness error probability In [DC17] protocol, Bloom filter introduces

a false positive error in the output. Recall, the false positive rate (FPR) is the

probability that a single element is mistakenly marked as being in the set. The

[DC17]’s implementation chooses FPR of 2−30. Thus, computing the set union of

2−18 items each, the probability that the entire output includes a false positive is

2−12. We use simple hashing with probability of existence of an overflowed bin of

2−40. Thus, in our protocol, the correctness error probability 2−40 is per whole set,

not per single item.

5.5.2 Scalability and Parallelizability

We demonstrate the scalability and parallelizability of our protocol by evaluating

it on set sizes n = {28, 210, 212, 214, 216, 218, 220, 222}. We run each party in parallel

with T ∈ {1, 4, 16, 32} threads. We report the performance of our protocol in Table

6.3, showing running time in both LAN and WAN settings: a LAN setting with

10 Gbps network bandwidth and 0.02 ms round-trip latency; a WAN setting with

400 Mbps network bandwidth and a simulated 40 ms round-trip latency.

Our protocol indeed scales well. Small-size problems are sub-second; medium-

size problems (n = 214) are 3.54 seconds and larger sizes (n = 220) is under 4



179

Setting T
Set size n

28 210 212 214 216 218 220 222

LAN

1 0.66 0.86 1.42 3.54 12.41 61.34 238.88 1039.64
4 0.59 0.69 0.98 1.46 4.03 17.94 69.07 301.76
16 0.55 0.66 0.78 0.97 1.82 6.29 21.9 90.99
32 0.53 0.63 0.69 0.84 1.56 4.1 13.09 54.63

WAN

1 1.38 1.73 2.61 6.96 23.29 102.5 406.15 1679.85
4 1.33 1.56 1.99 3.29 8.58 31.05 118.79 463.51
16 1.25 1.39 1.76 2.55 5.61 18.67 70.55 280.15
32 1.22 1.33 1.57 2.4 5.02 17.08 62.96 250.97

Speedup 1.13-1.24 × 1.3-1.36× 1.66-2.06× 2.9-4.22× 4.64-7.98× 6-14.9× 6.5-18.2× 6.7-19.1×

Table 5.4: Scaling of our protocol with set size and number of threads. Total
running time is in seconds. n elements per party, 128-bit length element, and
threads T ∈ {1, 4, 16, 32} threads. LAN setting with 10Gbps network bandwidth,
0.02ms RTT. WAN setting with 400Mbps network bandwidth, 40ms RTT.

minutes, all single-threaded. Increasing the number of threads runs the n = 220

instance in 13.09 seconds, a four orders of magnitude improvement over prior work.

Benchmarking our implementation in the WAN setting, our protocol also scales

well due to the fact that the communication cost is reasonable (for n = 218, our

protocol needs 652.09 MB of communication).

Our protocol is very amenable to parallelization. Specifically, our algorithm

can be parallelized at the level of bins. For example, when increasing the number

of threads from 1 to 32, our protocol shows a factor of 19× improvement as the

running time reduces from 1039.64 seconds to 54.63 seconds for an input of n = 222

elements.

Of particular interest is the last row, which presents the ratio between the

runtime of the single thread and 32 threads. Our protocol yields a better speedup
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when the set size is larger. For smallest set size of n = 28, the protocol achieves

a moderate speed up of about 1.13. When considering the larger database size

n = 222, the speed up of 3.4 − 3.6 is obtained at 4 threads and 6.7 − 19.1 at 32

threads.
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Parameters:

• Two parties: sender S and receiver R

• Set X is of size n of elements.

• The bit-length of field elements σ = λ+ log(n).

• Ideal OPRF, Fpm primitives specified in Figure 2.2, and Figure 2.3, re-
spectively. Let Fk(x) : {0, 1}∗ 7→ {0, 1}σ be the underlying OPRF func-
tion.

• A collision-resistant hash function h(x) : {0, 1}∗ 7→ {0, 1}σ.

Input of S: x∗ ∈ {0, 1}∗

Input of R: X = {x1, x2, . . . , xn} ⊆ {0, 1}∗

Protocol:

1. S acts as OPRF receiver, sends x∗ to OPRF. S receives q∗ = Fk(x
∗) and

receiver R receives k.

2. R chooses s ← F(2σ) at random. R interpolates a F(2σ)-polynomial
P (x) over points {(h(xi), s⊕qi)}, where qi = Fk(xi),∀i ∈ [n]. Here s⊕qi
is computed as operation on σ-bit strings.

3. R sends the coefficients of P to S.

4. S computes s∗ = P (h(x∗))⊕ q∗.

5. S and R invoke the Fpm-functionality:

• R acts as receiver with input s.

• S acts as sender with input s∗.

• R receives output from Fpm.

Figure 5.3: Reverse Private Membership Test Protocol Fnrpmt.
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Parameters:

• Set sizes n1 and n2, and two parties: sender S and receiver R
• A bit-length `. Let n = max(n1, n2).
• Number of bins β = β(n), and max bin size m, suitable for our hashing

scheme (Table 5.2)
• Ideal Frpmt primitive defined in Figure 5.1, and ideal OT primitive.
• A special dummy item ⊥ ∈ {0, 1}∗

Input of S: X = {x1, x2, . . . , xn1} ⊆ {0, 1}`

Input of R: Y = {y1, y2, . . . , yn2} ⊆ {0, 1}`

Protocol:

1. Randomly pick a hash function H from all hash functions with domain
{0, 1}` and range [β].

2. S and R hash elements of their sets X and Y into β bins under hash
function H. Let BS [i] and BR[i] denote the set of items in the sender’s
and receiver’s i-th bin, respectively.

3. S pads each bin BS [i] with (several copies, as needed) the special item
⊥ up to the maximum bin size m+ 1, and randomly permutes all items
in this bin.

4. R pads each bin BR[i] with one special item ⊥ and (several, as needed)
different dummy items to the maximum bin size m+ 1.

5. R initializes set Z = {}.
6. For each bin i ∈ [β], for each item xj ∈ BS [i]:

(a) S and R invoke the Frpmt-functionality:

• S acts as sender with input xj

• R acts as receiver with input set BR[i]

• R obtains bit bj.

(b) S and R invoke the OT-functionality:

• S acts as sender with pair-input {xj,⊥}
• R acts as receiver with bit input bj

• R obtains the OT output zj and sets Z = Z ∪ zi.
7. R outputs Y ∪ Z.

Figure 5.4: Private Set Union Protocol Fn1,n2
psu .
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Figure 5.5: Communication cost (MB) of our PSU protocol for n = 216 given the
number of bins β = 10−2εn
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Chapter 6: PM Advanced Variant

SWiM: Secure Wildcard Pattern Matching From OT Extension by Vladimir

Kolesnikov, Mike Rosulek, Ni Trieu in Financial Cryptography [KRT18]

Suppose a server holds a long text string and a receiver holds a short pattern

string. Secure pattern matching allows the receiver to learn the locations in the

long text where the pattern appears, while leaking nothing else to either party

besides the length of their inputs. In this work we consider secure wildcard pattern

matching (WPM), where the receiver’s pattern is allowed to contain wildcards that

match to any character.

We present SWiM, a simple and fast protocol for WPM that is heavily based on

oblivious transfer (OT) extension. As such, the protocol requires only a small con-

stant number of public-key operations and otherwise uses only very fast symmetric-

key primitives. SWiM is secure against semi-honest adversaries. We implemented

a prototype of our protocol to demonstrate its practicality. We can perform WPM

on a DNA text (4-character alphabet) of length 105 and pattern of length 103 in

just over 2 seconds, which is over two orders of magnitude faster than the state-

of-the-art scheme of Baron et al. (SCN 2012).
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6.1 Introduction

Secure two-party computation allows mutually untrusted parties to perform a com-

putation on their private inputs without revealing any additional information ex-

cept for the result itself. Over the last few years, secure two-party computation

has been extensively studied and has become practical for a variety of applications

[MNPS04, KS08, ZRE15, GLMY16, KNR+17, WRK17] . Two adversarial models

are usually considered. In the semi-honest model, the adversary is assumed to

follow the protocol, while trying to learn information from the protocol transcript.

In the malicious model, the adversary can follow an arbitrary polynomial-time

strategy. We consider the semi-honest model in this work.

Pattern matching is a basic problem in secure computation. It has been ex-

tensively studied in the past decade, e.g., [HL08, BEDM+12, DF13, DCFT13,

FHV13, YSK+13, HT14, CS15, YSK+14, WJW+15, WZX17]. Pattern matching

is frequently used in text processing, database search [GHS10, CS15], network se-

curity [NN10], DNA analysis [OPJM10], and other practical algorithms. The most

commonly considered variant of secure pattern matching, which we will call exact

PM, is the setting where a server with input a text x ∈ Σn (over some alphabet

Σ) interacts with a receiver with input a pattern p ∈ Σm (for m < n). The re-

ceiver learns where the pattern occurs as a substring of the server’s text without

revealing any additional information. There are several important variants of pat-

tern matching, including approximate pattern matching and outsourced pattern

matching, which we discuss in Section 6.1.2.
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In this work, we focus on secure pattern matching with wildcards, which we will

call WPM. In this variant, the receiver’s pattern can include wildcard characters

that can match any character in the data, hence p ∈ (Σ ∪ {?})m. With wildcards,

the security requirements are more demanding: the server should not learn which

positions of p contain wildcards, and in the case of a match the receiver should not

learn the text character that matches a wildcard character in the pattern (unless

this could be inferred from the presence or absence of an overlapping match).

Allowing wildcards in a pattern matching functionality has been well stud-

ied in the absence of a security requirement [CH02, CWZ+06, CC07, CEPR09,

SOF10, Tha11, BGVV14, BI14, SSSS15, AWY15], and is motivated by the goal

of providing the facility of searching with errors/unknowns. Privacy issues arise

in searching on sensitive data and secure pattern matching with wildcards has

applications, e.g., in computational genetics and DNA analysis. Indeed, consider

the case of a hospital or biomedical research center holding patient genomic data,

and a researcher holding a specific cancer marker sequence with some errors. The

researcher wishes to know the frequency and positions of the gene occurrences in

the database. Due to the genome’s highly sensitive nature, the hospital is required

keep genomic data private, while the researcher needs to protect specific genome

sequence he is working on. The abundance of WPM applications, such as privacy-

preserving DNA matching described above, is our main motivation for improving

the state-of-the-art in secure wildcard pattern matching.
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6.1.1 Pattern Matching with Wildcards

In this section, we discuss directions and related work that achieves, or can be

naturally used to achieve, the WPM functionality in the semi-honest setting.

Circuit based. Generic secure computation protocols [Yao86, GMW87], allow-

ing evaluation of arbitrary functions, have seen tremendous performance improve-

ments in the last decade. Modern garbled circuit (GC) protocols evaluate two

million AND gates per second on a 1Gbps LAN. Several garbled circuits for Pat-

tern Matching and its variants were studied in [JKS08, KM10]. The best protocol

using this technique were proposed by Katz and Malka [KM10]. The authors

showed how to modify Yao’s garbled circuit to solve Pattern Matching where the

size of circuit is linear in the (a priori upper bound on the) number of occurrences

of the pattern in text. While it is possible to extend circuit-based protocol [KM10]

to allow wildcards, it would still require a bound on the number of matches to

be provided a priori for the circuit construction. When such bound is high or

simply unknown, their protocol suffers corresponding performance penalty. The

work [KM10] does not provide implementation or experimental results.

Homomorphic encryption based. To our knowledge, Hazay and Toft [HT10]

were the first to explicitly consider wildcard secure pattern matching. The core idea

of their protocol is that the receiver provides the wildcard positions to the server in

an encrypted form, and the substrings of the server’s text are obliviously modified

so as to match the pattern at those positions. Later, Vergnaud [Ver11] improved the
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work of [HT10] by employing Fast Fourier Transform. Both works rely on the fact

that if a pattern bit pi is equal to a text bit ti, then (ti−pi)2 equals 0, and otherwise

it is equal to 1. The work of Vergnaud [Ver11] requiresO((n+m)κ2) communication

and O(n logm) computational cost in both semi-honest and malicious settings,

where κ is computational security parameters. As [HT10, Ver11] do not provide

the experimental results, we do not compare execution times with their work.

In 2012, Baron et al. [BEDM+12] proposed an efficient pattern matching pro-

tocol called 5PM, for 5ecure Pattern Matching. They consider both malicious and

semi-honest models. 5PM works with character (non-binary) wildcards, and was

the first to provide an accompanying implementation. The protocol is based on an

insecure pattern matching algorithm proposed by Hoffmann [HHD11]. To obtain a

secure pattern matching, 5PM modifies the algorithm [HHD11] to work with basic

linear operations, which allowed instantiation with additive homomorphic encryp-

tion. 5PM requires O(nκ) communication and O(n + m) computational costs in

semi-honest setting. In Section 6.4 we compare our performance to that of 5PM

and report 2− 499× performance improvement even on medium-size instances.

Yasuda et al. [YSK+14] extend the exact pattern matching protocol

of [YSK+13] to support wildcards. The security of [YSK+14] is based on the

polynomial LWE assumption. Their scheme operates by blocks, limited by the

lattice dimension; for larger inputs x, inefficiency is introduced either by using

a larger lattice, or by the difficulty and cost of handling boundaries of blocks.

In [YSK+14], the authors do not present the performance comparison with 5PM

protocol, but indirectly this can be calculated. Yasuda et al. [YSK+14] mention
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that their protocol only 4−5× slower than the protocol [YSK+13], which does not

allow wildcards. In addition, [YSK+13] estimated that their work is about 10×

faster than 5PM when using much stronger hardware than 5PM ([YSK+13] exper-

iments were performed on Intel Xeon X3480 3.07 GHz machine with 16 GB RAM,

while 5PM [BEDM+12] used Intel dual quad-core 2.93GHz machine with 8GB

RAM). Putting all together, we conclude that [YSK+14] is approximately 2−2.5×

faster than 5PM. In contrast, our protocol is 2 − 499× times faster than 5PM,

while running on weak commodity hardware (same at 5PM, cf. Section 6.4.1); this

translates into the corresponding improvement over [YSK+14] as well. Further,

our approach is simpler and easier to implement.

We mention recent work of Saha and Koshiba [SK17], which improves on the

work of [YSK+14] by proposing a new packing method that efficiently addresses

continuous wildcards occurring in the pattern (e.g., pattern 10????01???110 has

k = 3 sub-patterns: 10, 01, and 110). The main idea of their packing method

is to let the receiver break down the pattern into k sub-patterns and have the

parties perform the traditional pattern matching on these patterns. This solution

is about k× faster than previous work [YSK+14]. However, it reveals significant

information about the pattern, especially for larger k.

6.1.2 Variants of Pattern Matching

For completeness, we briefly discuss work on several additional variants of secure

pattern matching.
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Exact pattern patching. To our knowledge, Troncoso-Pastoriza et al. [TKC07]

were the first to consider secure pattern matching. Their protocol is based on

oblivious automaton evaluation. The protocol [TKC07] requires O(nm) commu-

nication and computational cost. Several follow-up works [Fri09, MNSS12] im-

proved the computational cost and reduced the round complexity. Another line of

work [HL08, GHS10] is based on oblivious pseudorandom functions (OPRF), and

obtains security in the malicious setting using O(nm) communication and compu-

tational cost with O(m) rounds. De Cristofaro et al. [DCFT13] consider a secure

and efficient pattern matching protocol which hides the length of the pattern.

Approximate/fuzzy pattern matching. The functionality of this problem

is to find the text positions matches approximately (rather than exactly). This

problem can be solved by determining whether the Hamming distance between each

text substring and the pattern is less than a threshold t. Hazay and Toft [HT10,

HT14] proposed a malicious-secure solution with O(nt) communication and O(nm)

computation costs.

Outsourcing pattern matching. In this setting, parties outsource their en-

crypted data and computation to an untrusted server, while maintaining data

privacy. The main goal here is to minimize the communication and computational

overhead of the parties by relying on the powerful resources of the untrusted server.

The first work that considered secure pattern matching in the cloud setting can

be traced back to Faust et al. [FHV13]. Other follow-up works are [WJW+15].

Recently, Wei et al. [WZX17] proposed an efficient solution by combining a secret
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Protocol
Computation Communication Rounds Security

Online Offline Online Offline Online Offline Model

[Ver11] O(n logm) O((m+ n)κ2) O(1) semi-honest & malicious

[BEDM+12]
O(mn) O((m+ n)κ2) 8 malicious
O(m+ n) O(nκ) 2 semi-honest

Ours 0 O(κ) O(m+ (λ+ κ)n) O(nm) 2 2 semi-honest

Table 6.1: Communication (bits) and computation (number of exponentiations)
complexities of WPM protocols, where n is length of text, m is length of pattern;
and λ and κ are the statistical and computational security parameters, respectively.
λ = 40 and κ = 128 in our protocols, while κ is in the range 1024-2048 in [Ver11,
BEDM+12] protocols (due to their use of public-key primitives).

sharing scheme and oblivious transfer which requires O(κ) computation and O(mn)

communication costs. Outsourcing pattern matching can be viewed as substring

searchable encryption which are studied in [CS15, ÇCL+17]

6.2 Overview of Our Results and Techniques

In this work we present SWiM (Secure Wildcard Pattern Matching ), a protocol for

WPM based on two fast cryptographic tools: oblivious transfer and secure string

equality test (given two strings of equal lengths, without wildcards, determine

whether they are equal). Thanks to recent optimizations in oblivious transfer

protocols [Bea96, IKNP03, KK13, ALSZ13], it is possible to realize a large number

of OT instances with amortized cost of only a few µs. Kolesnikov et al. [KKRT16]

give a protocol for secure string equality test based on techniques for efficient OT.

With their protocol, one can perform many private equality tests with amortized

cost of 5 µs.
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Overview of techniques. Suppose the sender holds a string x ∈ {0, 1}∗ and

the receiver holds a pattern p ∈ {0, 1, ?}∗.

As a very simple warm up, consider the case that |x| = |p| = 1. The receiver

will first encode its pattern p ∈ {0, 1, ?} as a pair of bits (p?, p̄) (“p-star & p-bar”),

using the following encoding:

p p? p̄

? 1 0

1 0 1

0 0 0

(6.1)

The significance of this encoding is the following:

x matches pattern p ⇐⇒ x = p? · x⊕ p̄ (6.2)

Indeed, if p = ?, then (p?, p̄) = (1, 0), so the RHS of (6.2) simplifies to x and the

two sides equal (regardless of x). On the other hand, if p 6= ?, then (p?, p̄) = (0,p),

so the RHS simplifies to p and the two sides equal if and only if p = x.

Our next trick is to blindly evaluate equation (6.2) using a single OT evaluation.

The parties invoke an instance of 1-out-of-2 bit-OT, where the sender gives inputs

(k,k ⊕ x), and the receiver gives input p?. Here k is a random bit chosen by the

sender. Note that the receiver’s output from this OT is k ⊕ p? · x.

Now, adding k to both sides of the equation in (6.2), we have that x matches

pattern p, if and only if k ⊕ x = (k ⊕ p? · x) ⊕ p̄. Importantly, the LHS of this
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equation is known to the sender, while the RHS is known to the receiver. At the

same time, the random mask k hides all information about x from the receiver. We

can summarize the above gadget as follows: using a single OT of bits, the sender

and receiver each compute a bit which is the same bit if and only if x matches

pattern (possibly wildcard) p.

This technique can be easily extended to the case of WPM with |x| = |p| = n

by simply doing the above gadget n times, bit-by-bit. After doing so, each party

will hold an n-bit string (without wildcards); these two strings will be equal if and

only if x matches the pattern p. An example is given in Figure 6.1 (we simply

extend the notation ⊕ and · to bit-vectors). In short, we have reduced the problem

of WPM with |x| = |p| to the problem of secure (exact, no wildcards) equality

test of strings. We complete the wildcard pattern matching by actually testing the

equality of these strings, using the efficient protocol of Kolesnikov et al. [KKRT16].

The security of this protocol (in the semi-honest model) is easy to understand:

the only new information is that the receiver obtains output k⊕p? ·x, which leaks

no information about the sender’s input x since k is uniform.

Now consider extending this approach to the general case of WPM with

|x| > |p|. The idea is the natural one: for each i ∈ {1, |x| − |p| + 1} simply

perform the above approach on the substring x[i . . . i+ |p| − 1] and p. Unpacking

the abstractions reveals room for optimizations, as follows. While the previous con-

structions were presented in terms of OT of bits, the OT of strings is significantly

more efficient in practice. We observe that in each subprotocol, the receiver’s OT

choice bits are always the same p?, allowing corresponding OT instances to be
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OT

x 0 0 1 1 1 0

k 1 0 0 1 0 1

k⊕x 1 0 1 0 1 1

} p ? ? ? 1 1 0

p? 1 1 1 0 0 0
p̄ 0 0 0 1 1 0

k⊕p? ·
x

1 0 1 1 0 1

1 0 1 0 1 1

⊕

strings equal ⇔ x matches p

Figure 6.1: Illustration of the main idea behind our protocol: using oblivious
transfer and private string equality test to perform private string equality with
wildcards.

combined easily. Hence instead of |p|(|x|− |p|+1) instances of bit-OT, we can use

|p| instances of string-OT, with strings of length |x| − |p| + 1. This optimization

actually reduces costs by a multiplicative factor of the security parameter. The

details are given in Section 6.3.

In Section 6.3.1 we present additional optimizations and extensions, such as

moving almost all of the cost to the offline, amortization and efficient handling of

non-binary alphabets.

Efficiency. SWiM requires only O(κ) public-key operations (all in the offline

phase). In terms of communication, our protocol requires O(mn) in the offline

phase, but only O(m+ (λ+κ)n) in online phase. Here, κ, λ are the computational

and statistical security parameters, respectively. As noted previously, all constants

under the big-O are small, as we use fast optimized building blocks. We describe

the performance of representative Secure Wildcard Pattern Matching protocols in

Table 6.1.
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We note that SWiM is efficient concretely. This is because we carefully opti-

mize both computation and communication. Further, we use algorithmically- and

implementation-optimized building blocks, namely the OT extension of [ALSZ13]

and private equality test of [KKRT16]. In particular, the [KKRT16] equality test

is independent of the length of the players’ inputs.

This significantly improves over the state-of-the-art secure wildcard pattern

matching protocol of [BEDM+12]. In Section 6.4, we report in detail on imple-

mentation and evaluation, and find that SWiM is a 2−499× faster than 5PM, and

continues to scale well on larger instances. 5PM considers WPM instances on DNA

text of length up to 105 and pattern of length up to 103. These larger instances

require only 1.96 seconds in our protocol, in comparison with 304.53 seconds with

1024-bit key and 978.94 seconds with 2048-bit key using [BEDM+12].

6.3 SWiM: the Main Construction

We present SWiM, our main construction for the WPM functionality in Figure 2.6.

It closely follows and formalizes the high-level overview presented in Section 6.2.

For readability, we present SWiM for binary alphabet Σ = {0, 1}. In Section 6.3.1

we show how to easily extend it to an arbitrary Σ. We first run OT extension with

the chosen inputs, which will allow the receiver to compute α = k ⊕ p? · x ⊕ p̄.

Recall, as discussed in Section 6.2, x matches p, iff α equals to k⊕x held by the

sender. This equality is efficiently checked in bulk by calling instances of Private

Equality Test defined in Figure 2.3, with the result delivered to the receiver and



196

output. The SWiM protocol is presented in Figure 6.2 and is proven secure against

semi-honest adversaries.

Correctness. The main observation of OT-extension is that the receiver obtains

output qi such that:

qi = ki ⊕ p?i · x[i,i+n′−1] =


ki, if p?i = 0

ki ⊕ x[i,i+n′−1], if p?i = 1

Therefore, the i-th row of U is equal to ui = ki ⊕ p?i · x[i,i+n′−1] ⊕ C(p̄i).

Let K denote the m × n′ matrix such that the i-th row of K is the vector ki.

When viewing the matrices U and T column-wise, we see that the receiver holds

ui = ki ⊕ p? · x[i,i+m−1] ⊕ p̄ while the sender holds ti = ki ⊕ x[i,i+m−1]. Following

the high-level idea described Section 6.2, and specifically the pattern match test

of Equation 6.2, it is clear that the pattern matches the text x at the i-th position

if and only if ui = ti.

Theorem 15. The SWiM protocol in Figure 6.2 securely computes the WPM func-

tionality (Figure 2.6) in semi-honest setting, given the ideal OT and Fpm primitives.

Proof. The proof of security of our construction is based on the fact that the OT

and Fpm are secure.

Simulating S. It is easy to argue that the view of the sender S can be perfectly

simulated since the semi-honest S receives nothing from the protocol.

Simulating R. The view of the receiver R consists of two kinds of messages:
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(1) output of the form qi from the OT primitive in Step 2c, which is equal to

ki⊕ p?i ·x[i,i+n′−1] and hence information-theoretically hides x; (2) outputs of Fpm

in step 4b, which correspond exactly to the WPM protocol output itself. Hence

both can be perfectly simulated.

Cost. Using OT extension, some initial “base OT” instances are required. These

base OTs consist of O(κ2) communication and O(κ) exponentiations. Thereafter,

any number of OTs can be obtained with communication and computation pro-

portional only to total size of parties’ inputs. The computation consists of only

symmetric-key operations. In our case, there are m OT instances, each on strings

of length n′, so O(n′m) total communication and symmetric-key operations.

The Fpm protocol of [KKRT16] has a statistical security parameter which we

denote λ. Specifically, the protocol allows for a false positive (output 1 for input

strings which are different) with probability 2−λ. The protocol also uses OT ex-

tension, but the base OTs can be shared/reused from the base OTs mentioned

above. The amortized cost of an equality test is 448 + λ bits of communication

(using typical parameters) and a constant number of symmetric-key operations.

6.3.1 Additions, optimizations

Online/offline phase. We briefly describe how the protocol can be modified so

that most of the cost can be incurred in an offline phase, before the parties’ inputs

are known.
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First, we can run all OTs in Step 2 of the protocol before the receiver’s input p

is known, by taking advantage of a well-known technique of Beaver [Bea95]. The

following modifications are required: First, the receiver uses a random π ∈ {0, 1}m

(rather than p?) as its OT choice bits in Step 2 (note that p̄ is not used until Step

3). Later, upon learning p, the receiver sends δ = p⊕π to the sender. The sender

sets k′i = ki ⊕ δi · x[i,i+n′−1]. It is easy to see that the receiver holds

qi = ki ⊕ πi · x[i,i+n′−1] = ki ⊕ (δi ⊕ p?i ) · x[i,i+n′−1] = k′i ⊕ p?i · x[i,i+n′−1].

In other words, k′i and qi satisfy the appropriate condition, now with respect to

the receiver’s true input p. The rest of the protocol continues as usual, with k′i

instead of ki.

There is also a standard Beaver technique for preprocessing OTs before the

sender’s OT input is known. Applying here naively would require the sender to

send online correction strings of total length O(|p||x|) since that is the combined

length of all the sender’s OT inputs.

Instead, we propose the following technique that is similar in spirit but takes

advantage of the fact that the sender’s OT inputs are derived from a single x value.

The parties run step 1, but with the sender using a random χ ∈ {0, 1}n instead of

the true input x (which is not yet known). After the online phase described above,

the sender will have k′i strings and the receiver will have qi = k′i ⊕ p?i · χ[i,i+n′−1].

As the sender learns its input x, it sends γ = x⊕ χ to the receiver. The receiver
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can compute

q′i
def
= qi ⊕ p?i · γ[i,i+n′−1] = (k′i ⊕ p?i · χ[i,i+n′−1])⊕ p?i · γ[i,i+n′−1]

= k′i ⊕ p?i · (χ[i,i+n′−1] ⊕ γ[i,i+n′−1])

= k′i ⊕ p?i · x[i,i+n′−1]

In other words, k′i and q′i satisfy the appropriate condition, now with respect to

the sender’s true input x. The protocol can proceed, using q′i instead of qi.

By having precomputation, we are able to shift the bulk of the O(nm) com-

munication to the offline phase. In the online phase, each party only sends a

“correction string” whose length is proportional to its input size, followed by the

equality tests. Similarly to the standard Beaver’s technique, it is easy to see that

the resulting protocol is secure, namely that the separation of the offline and online

phases can be simulated.

Amortization. In certain multiple-execution scenarios, the cost of our protocol

can be further significantly reduced by reusing the OT/PM outputs.

First, notice that in SWiM (Figure 6.2), the OT step is independent of the non-

wildcard characters of the pattern string (i.e., independent of p̄). Therefore, if the

positions of wildcards in the receiver’s pattern (i.e., p?) are the same across several

executions, OT in subsequent executions can be implemented as length extension

of the OT in the first execution. Further, if additionally the sender’s text is the

same across the executions (and the only variation is the non-? pattern), then only
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the equality tests need to be run in the subsequent executions.

Further, in the PM protocol of [KKRT16], the receiver can check his input for

equality against a polynomial number sender’s inputs at the cost λ per check (vs

4κ+ λ for full KKRT PM). Indeed, on the KKRT BaRK-OPRF output (R, S)←

(Fk(x), k), KKRT sender S can send to receiver R a set of {Fk(yi)}, and R will

determine x = yi ⇐⇒ Fk(x) = Fk(yi).

To use this in the amortization, we let the WPM sender play the role of PM’s

receiver. We note that this amortization will reveal whether the WPM receiver

has used the same pattern in different instances. Additionally, PM receiver learns

the comparison output, and so will the WPM sender. Both restrictions may be

acceptable in certain scenarios.

Non-binary alphabets. The protocol extends naturally to alphabets Σ beyond

Σ = {0, 1}. Without loss of generality let Σ = Zb for some b. The receiver holds a

pattern p ∈ (Σ∪{?})m and will encode the pattern into p? ∈ {0, 1}m and p̄ ∈ Σm,

as follows:

pi p?i p̄i

? 1 0

a 6= ? 0 a

Consider the corresponding amendment to SWiM (Figure 6.2), where the parties

hold strings of length m and n, both over the alphabet Σ. The parties still perform

m 1-out-of-2 OT, using p? as the receiver’s choice bits. All other vectors (k, q,

etc) become vectors over Σ, and the ⊕ operation is replaced by component-wise
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addition mod |Σ|. Note that the “·” operation in the protocol is only used between

a binary vector p? and a Σ-vector, so its meaning can still be taken as component-

wise multiplication. Finally, the KKRT PM can be naturally amended to support

equality tests of non-binary strings, e.g. by translating the strings into binary.

6.4 SWiM Implementation and Performance

Our SWiM implementation uses code from [KKRT16, Rin, WMK16]. All running

times are reported as the average over 10 trials. Our complete implementation is

available on https://github.com/osu-crypto/PatternMatching.

6.4.1 Experimental Performance: Comparison with Prior Work

We compare our prototype to the state-of-art WPM protocols [BEDM+12,

YSK+14]. While the implementations [BEDM+12, YSK+14] are not publicly avail-

able, [BEDM+12] reports experimental numbers in the semi-honest model. Fur-

ther, as we discussed in Section 6.1.1, [YSK+14] numbers can be indirectly es-

timated to be around 2 − 2.5× faster than 5PM. We give detailed comparisons

to 5PM protocol [BEDM+12]; comparison to other works can be appropriately

derived.

Runtime Comparison. For the most direct comparison, we matched the test

system’s computational performance to that of [BEDM+12], as reported in their

Table 13. Since 5PM [BEDM+12] experiments were performed on Intel dual quad-

https://github.com/osu-crypto/PatternMatching
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core 2.93GHz Linux machine with 8GB RAM, we evaluate our protocol on a virtual

Linux machine with 8GB RAM and 2 cores (the host machine is Intel Core i7

2.60GHz with 12GB RAM). Table 6.2 presents the running time of our protocol

compared with 5PM [BEDM+12]. For our protocol, we report both the total

running time and the online time. We use dlog(Σ)e bits to encode the text and

pattern alphabet into binary alphabet.

When comparing the two protocols, we find that the total running time of

SWiM is significantly less than that of the prior works, requiring 1.96 seconds to

perform a wildcard pattern matching with 4-symbol alphabet for text size n = 105

and pattern size m = 103. This is a 155× improvement in running time com-

pared to 5PM [BEDM+12] which used 1024-bit key length. When considering

5PM [BEDM+12] with 2048-bit key length (which better corresponds to our secu-

rity level), our improvement is 499×.

SWiM is optimized for the typical use case, where the length of the text is

greater than that of the pattern. If this doesn’t hold (indeed, an unusual setting for

the motivating examples we consider), our performance improvement is moderate.

For instance when m = n = 103, our protocol requires 0.61 seconds. Using the

same parameters, the protocol of [BEDM+12] results in an execution time of 1.39

seconds. The moderate 2× improvement is due to the constant-cost overheads

of OT extension and PM, which do not pay off without amortization in a larger

execution. Even in these cases, our protocol achieves great improvement in the

online phase (e.g., running in just 3ms for m = n = 103).
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Bandwidth Comparison. We calculate the bandwidth requirements of our pro-

tocol on the range of the length text n ∈ {216, 218, 220, 222} and the length pattern

m ∈ {28, 210, 212, 214}, for the binary alphabet. For comparison, we calculate the

communication cost of 5PM [BEDM+12], for the same parameters. 5PM band-

width requirements is independent on the length of pattern, and is roughly (n+2)κ

bits. 5PM protocol relies on public-key operations, and needs 1024-2048-bit key

lengths.

Table 6.4 reports the communication overhead of the protocols. Our protocol

requires less communication for smaller pattern sizes. Concretely, for n = 222

and m = 28, our protocol requires 392.1 MB of communication, a 1.37 to 2.7×

improvement compared to 5PM [BEDM+12]. Increasing the pattern length to

m = 212 the communication cost of 5PM protocol (at a great performance penalty!)

becomes preferable to ours, since their bandwidth is independent of the length of

pattern. Note, the bulk of the communication cost in our protocol is OT extension

in the offline phase.

We note that Table 6.4 does not show off SWiM algorithmic improvement for

non-binary alphabet, which reduces the number of OT calls. For larger Σ, we (but

not other approaches, to our knowledge) get factor ≈ log |Σ| bandwidth reduction

in the offline phase over the simple mapping of Σ to a binary alphabet.
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6.4.2 SWiM performance at scale: experiments and discussion

To understand the scalability of SWiM, we evaluate it on the range of the

text/pattern lengths n ∈ {216, 218, 220, 222, 224}, m ∈ {28, 210, 212, 214}, for the bi-

nary alphabet. We report SWiM detailed performance results in Table 6.3, showing

total running time and online time in both LAN and WAN settings.

This set of experiments was ran on a larger machine (a single server with 2x 36-

core Intel Xeon 2.30GHz CPU and 256GB of RAM), whose resources were carefully

limited by us to provide a good understanding of the performance. Specifically,

we ran each party single threaded, both on the same machine, communicating

via localhost network. We simulated a network connection using the Linux tc

command. We configured LAN setting with 0.02ms round-trip latency, 10 Gbps

network bandwidth, and WAN setting with a simulated 40ms round-trip latency,

400 Mbps network bandwidth.

The step of forming the matrices in SWiM is relatively costly. We push it into

the preprocessing phase, which will include creating OT matrices and performing

the matrix transposition. Our experiments show that the offline phase takes 60−

90% of the total running time. For instance, with text size n = 222 and pattern

size m = 214 our overall running time is 60.10 seconds with an offline phase of

53.64 seconds, a 89% of the overall cost.

We find that SWiM scales well in the experiments. For text size n = 216 and

pattern size m = 28, our protocol takes only 0.21 seconds in which 0.04 seconds is

for online time. When increasing the lengths to n = 224 and m = 212, we see that
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our protocol requires roughly 52 seconds in total.

When evaluating our implementation in the WAN setting, we still have a fast

online phase due to the fact that OTs can be precomputed in the offline phase.

For n = 224 and m = 212, we obtain an overall running time of 363.06 seconds and

an online time of 50.15 seconds which contains only 13% of the total cost. For the

small text and pattern, the protocol requires only a few seconds. With n = 216

and m = 28, our protocol takes an overall running time of 1.04 seconds with the

online phase requiring 0.4 seconds.
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Parameters:

1. Two parties: sender S and receiver R

2. A length n of text, a length m of pattern. Define n′ = n−m+ 1

3. A repetition encoding C : {0, 1} → {0, 1}n′
defined by C(a) = an

′
for a ∈ {0, 1}.

4. Ideal OT and Fpm primitives.

Input of S: a text x ∈ {0, 1}n

Input of R: a pattern p ∈ {0, 1, ?}m encoded into p̄,p? ∈ {0, 1}m, as described in
Section 6.2.

Protocol:

1. [Random Keys] S chooses {ki}i∈[m] ← {0, 1}n
′

at random

2. [OT] For each i ∈ [m], S and R invoke OTn′-functionality

(a) R acts as receiver with a input-bit p?i .

(b) S acts as sender with a ordered pair input (ki,ki ⊕ x[i,i+n′−1])

(c) R receives output qi

3. [Matrix Form]

(a) S forms m × n′ matrix T such that the i-th row of T is the vector ti =
ki ⊕ x[i,i+n′−1]

(b) R forms m × n′ matrix U such that the i-th row of U is the vector ui =
qi ⊕ C(p̄i).

4. [PEQ]

(a) For each i ∈ [n′], S and R invoke the Fpm-functionality:

• S acts as sender with input ti as the i-th column of T

• R acts as receiver with input ui as the i-th column of U

(b) R outputs {i ∈ [n′] | ith instance of Fpm outputs 1}

Figure 6.2: SWiM: Secure Wildcard Pattern Matching Protocol for Σ = {0, 1}.
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Protocol
Bit key Pattern Text length n
length length m 103 104 105

5PM

1024
10 0.42 4.08 40.43
102 0.67 6.81 64.76
103 0.39 29.15 304.53

2048
10 1.50 14.18 140.52
102 2.27 22.37 216.27
103 1.39 92.29 978.94

SWiM 128
10 0.29 (0.006) 0.36 (0.03) 0.76 (0.32)
102 0.37 (0.005) 0.62 (0.09) 1.82 (0.49)
103 0.61 (0.003) 0.73 (0.04) 1.96 (0.39)

Table 6.2: 5PM vs SWiM. Comparison of 5PM and SWiM of the total runtime
(in seconds) for wildcard pattern matching of length n, the pattern of length m,
and the alphabets of sizes 4 (DNA). In SWiM, the online time is presented in
parenthesis. Best results marked in bold. SWiM experiment ran on Intel Core i7
2.60GHz with 8GB RAM. 5PM timings reported on comparable hardware.

Setting
Pattern Text length n

length m 216 218 220 222 224

LAN

28 0.21 (0.04) 0.40 (0.15) 0.94 (0.48) 4.07 (2.78) 16.11 (11.38)
210 0.24 (0.03) 0.48 (0.12) 1.41 (0.57) 5.21 (2.38) 20.61 (10.00)
212 0.37 (0.03) 0.97 (0.17) 3.40 (0.78) 12.92 (3.34) 51.88 (14.44)
214 1.02 (0.07) 3.91 (0.37) 15.14 (1.66) 60.10 (6.46) 246.24(43.51)

WAN

28 1.04 (0.40) 1.90 (1.02) 5.10 (3.10) 17.84 (12.04) 70.45 (48.43)
210 1.28 (0.40) 2.81 (0.95) 8.62 (3.04) 31.29 (12.00) 127.92 (48.08)
212 2.28 (0.36) 6.46 (0.96) 21.61 (3.17) 84.52 (12.48) 363.06 (50.15)
214 6.16 (0.34) 22.24 (1.07) 85.98 (3.87) 318.23 (15.45) 1,382.03 (65.86)

Table 6.3: Total running time and online time (in parenthesis) in second of SWiM
for the text of length n, the pattern of length m, binary alphabet. The results
mentioned in the discussion is marked in bold. Experiment ran sender and receiver
single-threaded on 2x 36-core Intel Xeon 2.30GHz CPU and 256GB of RAM.

Protocol
Bit key Pattern Text length n
length length m 216 218 220 222

5PM
1024 {28, 210, 212, 214} 8.4 33.5 134.2 536.9
2048 {28, 210, 212, 214} 16.8 67.1 268.4 1073.7

SWiM 128

28 7.6(3.9) 25.9(16.1) 99.2(64.1) 392.1(256.4)
210 13.7(3.9) 50.9(15.9) 199.7(64.1) 794.6(256.3)
212 36.7(3.7) 149.5(15.8) 600.2(63.8) 2403.1(256.1)
214 105.2(2.9) 519.9(15.1) 2178.6(63.1) 8813.3(255.4)

Table 6.4: Communication (in MB) for wildcard pattern matching of text length
n, pattern length m, binary alphabet. In SWiM, the online communication cost is
presented in parenthesis. Compared to 5PM, best results marked in bold.
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