103 research outputs found

    Quantum Algorithms for Finding Constant-sized Sub-hypergraphs

    Full text link
    We develop a general framework to construct quantum algorithms that detect if a 33-uniform hypergraph given as input contains a sub-hypergraph isomorphic to a prespecified constant-sized hypergraph. This framework is based on the concept of nested quantum walks recently proposed by Jeffery, Kothari and Magniez [SODA'13], and extends the methodology designed by Lee, Magniez and Santha [SODA'13] for similar problems over graphs. As applications, we obtain a quantum algorithm for finding a 44-clique in a 33-uniform hypergraph on nn vertices with query complexity O(n1.883)O(n^{1.883}), and a quantum algorithm for determining if a ternary operator over a set of size nn is associative with query complexity O(n2.113)O(n^{2.113}).Comment: 18 pages; v2: changed title, added more backgrounds to the introduction, added another applicatio

    On the Power of Non-Adaptive Learning Graphs

    Full text link
    We introduce a notion of the quantum query complexity of a certificate structure. This is a formalisation of a well-known observation that many quantum query algorithms only require the knowledge of the disposition of possible certificates in the input string, not the precise values therein. Next, we derive a dual formulation of the complexity of a non-adaptive learning graph, and use it to show that non-adaptive learning graphs are tight for all certificate structures. By this, we mean that there exists a function possessing the certificate structure and such that a learning graph gives an optimal quantum query algorithm for it. For a special case of certificate structures generated by certificates of bounded size, we construct a relatively general class of functions having this property. The construction is based on orthogonal arrays, and generalizes the quantum query lower bound for the kk-sum problem derived recently in arXiv:1206.6528. Finally, we use these results to show that the learning graph for the triangle problem from arXiv:1210.1014 is almost optimal in these settings. This also gives a quantum query lower bound for the triangle-sum problem.Comment: 16 pages, 1.5 figures v2: the main result generalised for all certificate structures, a bug in the proof of Proposition 17 fixe

    On the Power of Non-adaptive Learning Graphs

    Get PDF
    We introduce a notion of the quantum query complexity of a certificate structure. This is a formalization of a well-known observation that many quantum query algorithms only require the knowledge of the position of possible certificates in the input string, not the precise values therein. Next, we derive a dual formulation of the complexity of a non-adaptive learning graph and use it to show that non-adaptive learning graphs are tight for all certificate structures. By this, we mean that there exists a function possessing the certificate structure such that a learning graph gives an optimal quantum query algorithm for it. For a special case of certificate structures generated by certificates of bounded size, we construct a relatively general class of functions having this property. The construction is based on orthogonal arrays and generalizes the quantum query lower bound for the k-sum problem derived recently by Belovs and Špalek (Proceeding of 4th ACM ITCS, 323–328, 2013). Finally, we use these results to show that the learning graph for the triangle problem by Lee et al. (Proceeding of 24th ACM-SIAM SODA, 1486–1502, 2013) is almost optimal in the above settings. This also gives a quantum query lower bound for the triangle sum problem.National Science Foundation (U.S.) (Scott Aaronson’s Alan T. Waterman Award

    Quantum Distributed Algorithm for Triangle Finding in the CONGEST Model

    Get PDF
    • …
    corecore