1,992 research outputs found

    DeepWalk: Online Learning of Social Representations

    Full text link
    We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide F1F_1 scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.Comment: 10 pages, 5 figures, 4 table

    Initializing neural networks for hierarchical multi-label text classification

    Get PDF
    Many tasks in the biomedical domain require the assignment of one or more predefined labels to input text, where the labels are a part of a hierarchical structure (such as a taxonomy). The conventional approach is to use a one-vs.-rest (OVR) classification setup, where a binary classifier is trained for each label in the taxonomy or ontology where all instances not belonging to the class are considered negative examples. The main drawbacks to this approach are that dependencies between classes are not leveraged in the training and classification process, and the additional computational cost of training parallel classifiers. In this paper, we apply a new method for hierarchical multi-label text classification that initializes a neural network model final hidden layer such that it leverages label co-occurrence relations such as hypernymy. This approach elegantly lends itself to hierarchical classifi- cation. We evaluated this approach using two hierarchical multi-label text classification tasks in the biomedical domain using both sentence- and document-level classi- fication. Our evaluation shows promising results for this approach

    Automated Social Text Annotation With Joint Multilabel Attention Networks

    Get PDF
    Automated social text annotation is the task of suggesting a set of tags for shared documents on social media platforms. The automated annotation process can reduce users' cognitive overhead in tagging and improve tag management for better search, browsing, and recommendation of documents. It can be formulated as a multilabel classification problem. We propose a novel deep learning-based method for this problem and design an attention-based neural network with semantic-based regularization, which can mimic users' reading and annotation behavior to formulate better document representation, leveraging the semantic relations among labels. The network separately models the title and the content of each document and injects an explicit, title-guided attention mechanism into each sentence. To exploit the correlation among labels, we propose two semantic-based loss regularizers, i.e., similarity and subsumption, which enforce the output of the network to conform to label semantics. The model with the semantic-based loss regularizers is referred to as the joint multilabel attention network (JMAN). We conducted a comprehensive evaluation study and compared JMAN to the state-of-the-art baseline models, using four large, real-world social media data sets. In terms of F 1 , JMAN significantly outperformed bidirectional gated recurrent unit (Bi-GRU) relatively by around 12.8%-78.6% and the hierarchical attention network (HAN) by around 3.9%-23.8%. The JMAN model demonstrates advantages in convergence and training speed. Further improvement of performance was observed against latent Dirichlet allocation (LDA) and support vector machine (SVM). When applying the semantic-based loss regularizers, the performance of HAN and Bi-GRU in terms of F 1 was also boosted. It is also found that dynamic update of the label semantic matrices (JMAN d ) has the potential to further improve the performance of JMAN but at the cost of substantial memory and warrants further study

    Learning to Predict Charges for Criminal Cases with Legal Basis

    Full text link
    The charge prediction task is to determine appropriate charges for a given case, which is helpful for legal assistant systems where the user input is fact description. We argue that relevant law articles play an important role in this task, and therefore propose an attention-based neural network method to jointly model the charge prediction task and the relevant article extraction task in a unified framework. The experimental results show that, besides providing legal basis, the relevant articles can also clearly improve the charge prediction results, and our full model can effectively predict appropriate charges for cases with different expression styles.Comment: 10 pages, accepted by EMNLP 201
    • …
    corecore