217 research outputs found

    A Data-Driven Edge-Preserving D-bar Method for Electrical Impedance Tomography

    Full text link
    In Electrical Impedance Tomography (EIT), the internal conductivity of a body is recovered via current and voltage measurements taken at its surface. The reconstruction task is a highly ill-posed nonlinear inverse problem, which is very sensitive to noise, and requires the use of regularized solution methods, of which D-bar is the only proven method. The resulting EIT images have low spatial resolution due to smoothing caused by low-pass filtered regularization. In many applications, such as medical imaging, it is known \emph{a priori} that the target contains sharp features such as organ boundaries, as well as approximate ranges for realistic conductivity values. In this paper, we use this information in a new edge-preserving EIT algorithm, based on the original D-bar method coupled with a deblurring flow stopped at a minimal data discrepancy. The method makes heavy use of a novel data fidelity term based on the so-called {\em CGO sinogram}. This nonlinear data step provides superior robustness over traditional EIT data formats such as current-to-voltage matrices or Dirichlet-to-Neumann operators, for commonly used current patterns.Comment: 24 pages, 11 figure

    Shape Calculus for Shape Energies in Image Processing

    Full text link
    Many image processing problems are naturally expressed as energy minimization or shape optimization problems, in which the free variable is a shape, such as a curve in 2d or a surface in 3d. Examples are image segmentation, multiview stereo reconstruction, geometric interpolation from data point clouds. To obtain the solution of such a problem, one usually resorts to an iterative approach, a gradient descent algorithm, which updates a candidate shape gradually deforming it into the optimal shape. Computing the gradient descent updates requires the knowledge of the first variation of the shape energy, or rather the first shape derivative. In addition to the first shape derivative, one can also utilize the second shape derivative and develop a Newton-type method with faster convergence. Unfortunately, the knowledge of shape derivatives for shape energies in image processing is patchy. The second shape derivatives are known for only two of the energies in the image processing literature and many results for the first shape derivative are limiting, in the sense that they are either for curves on planes, or developed for a specific representation of the shape or for a very specific functional form in the shape energy. In this work, these limitations are overcome and the first and second shape derivatives are computed for large classes of shape energies that are representative of the energies found in image processing. Many of the formulas we obtain are new and some generalize previous existing results. These results are valid for general surfaces in any number of dimensions. This work is intended to serve as a cookbook for researchers who deal with shape energies for various applications in image processing and need to develop algorithms to compute the shapes minimizing these energies

    Variational segmentation problems using prior knowledge in imaging and vision

    Get PDF

    Efficient Algorithms for Mumford-Shah and Potts Problems

    Get PDF
    In this work, we consider Mumford-Shah and Potts models and their higher order generalizations. Mumford-Shah and Potts models are among the most well-known variational approaches to edge-preserving smoothing and partitioning of images. Though their formulations are intuitive, their application is not straightforward as it corresponds to solving challenging, particularly non-convex, minimization problems. The main focus of this thesis is the development of new algorithmic approaches to Mumford-Shah and Potts models, which is to this day an active field of research. We start by considering the situation for univariate data. We find that switching to higher order models can overcome known shortcomings of the classical first order models when applied to data with steep slopes. Though the existing approaches to the first order models could be applied in principle, they are slow or become numerically unstable for higher orders. Therefore, we develop a new algorithm for univariate Mumford-Shah and Potts models of any order and show that it solves the models in a stable way in O(n^2). Furthermore, we develop algorithms for the inverse Potts model. The inverse Potts model can be seen as an approach to jointly reconstructing and partitioning images that are only available indirectly on the basis of measured data. Further, we give a convergence analysis for the proposed algorithms. In particular, we prove the convergence to a local minimum of the underlying NP-hard minimization problem. We apply the proposed algorithms to numerical data to illustrate their benefits. Next, we apply the multi-channel Potts prior to the reconstruction problem in multi-spectral computed tomography (CT). To this end, we propose a new superiorization approach, which perturbs the iterates of the conjugate gradient method towards better results with respect to the Potts prior. In numerical experiments, we illustrate the benefits of the proposed approach by comparing it to the existing Potts model approach from the literature as well as to the existing total variation type methods. Hereafter, we consider the second order Mumford-Shah model for edge-preserving smoothing of images which –similarly to the univariate case– improves upon the classical Mumford-Shah model for images with linear color gradients. Based on reformulations in terms of Taylor jets, i.e. specific fields of polynomials, we derive discrete second order Mumford-Shah models for which we develop an efficient algorithm using an ADMM scheme. We illustrate the potential of the proposed method by comparing it with existing methods for the second order Mumford-Shah model. Further, we illustrate its benefits in connection with edge detection. Finally, we consider the affine-linear Potts model for the image partitioning problem. As many images possess linear trends within homogeneous regions, the classical Potts model frequently leads to oversegmentation. The affine-linear Potts model accounts for that problem by allowing for linear trends within segments. We lift the corresponding minimization problem to the jet space and develop again an ADMM approach. In numerical experiments, we show that the proposed algorithm achieves lower energy values as well as faster runtimes than the method of comparison, which is based on the iterative application of the graph cut algorithm (with α-expansion moves)

    Active Contours and Image Segmentation: The Current State Of the Art

    Get PDF
    Image segmentation is a fundamental task in image analysis responsible for partitioning an image into multiple sub-regions based on a desired feature. Active contours have been widely used as attractive image segmentation methods because they always produce sub-regions with continuous boundaries, while the kernel-based edge detection methods, e.g. Sobel edge detectors, often produce discontinuous boundaries. The use of level set theory has provided more flexibility and convenience in the implementation of active contours. However, traditional edge-based active contour models have been applicable to only relatively simple images whose sub-regions are uniform without internal edges. Here in this paper we attempt to brief the taxonomy and current state of the art in Image segmentation and usage of Active Contours

    A Nash-game approach to joint image restoration and segmentation

    Get PDF
    International audienceWe propose a game theory approach to simultaneously restore and segment noisy images. We define two players: one is restoration, with the image intensity as strategy, and the other is segmentation with contours as strategy. Cost functions are the classical relevant ones for restoration and segmentation, respectively. The two players play a static game with complete information, and we consider as solution to the game the so-called Nash Equilibrium. For the computation of this equilibrium we present an iterative method with relaxation. The results of numerical experiments performed on some real images show the relevance and efficiency of the proposed algorithm
    • …
    corecore