405 research outputs found

    Fuzzy Maximum Satisfiability

    Full text link
    In this paper, we extend the Maximum Satisfiability (MaxSAT) problem to {\L}ukasiewicz logic. The MaxSAT problem for a set of formulae {\Phi} is the problem of finding an assignment to the variables in {\Phi} that satisfies the maximum number of formulae. Three possible solutions (encodings) are proposed to the new problem: (1) Disjunctive Linear Relations (DLRs), (2) Mixed Integer Linear Programming (MILP) and (3) Weighted Constraint Satisfaction Problem (WCSP). Like its Boolean counterpart, the extended fuzzy MaxSAT will have numerous applications in optimization problems that involve vagueness.Comment: 10 page

    Balanced Combinations of Solutions in Multi-Objective Optimization

    Full text link
    For every list of integers x_1, ..., x_m there is some j such that x_1 + ... + x_j - x_{j+1} - ... - x_m \approx 0. So the list can be nearly balanced and for this we only need one alternation between addition and subtraction. But what if the x_i are k-dimensional integer vectors? Using results from topological degree theory we show that balancing is still possible, now with k alternations. This result is useful in multi-objective optimization, as it allows a polynomial-time computable balance of two alternatives with conflicting costs. The application to two multi-objective optimization problems yields the following results: - A randomized 1/2-approximation for multi-objective maximum asymmetric traveling salesman, which improves and simplifies the best known approximation for this problem. - A deterministic 1/2-approximation for multi-objective maximum weighted satisfiability

    ASlib: A Benchmark Library for Algorithm Selection

    Full text link
    The task of algorithm selection involves choosing an algorithm from a set of algorithms on a per-instance basis in order to exploit the varying performance of algorithms over a set of instances. The algorithm selection problem is attracting increasing attention from researchers and practitioners in AI. Years of fruitful applications in a number of domains have resulted in a large amount of data, but the community lacks a standard format or repository for this data. This situation makes it difficult to share and compare different approaches effectively, as is done in other, more established fields. It also unnecessarily hinders new researchers who want to work in this area. To address this problem, we introduce a standardized format for representing algorithm selection scenarios and a repository that contains a growing number of data sets from the literature. Our format has been designed to be able to express a wide variety of different scenarios. Demonstrating the breadth and power of our platform, we describe a set of example experiments that build and evaluate algorithm selection models through a common interface. The results display the potential of algorithm selection to achieve significant performance improvements across a broad range of problems and algorithms.Comment: Accepted to be published in Artificial Intelligence Journa
    corecore