6,595 research outputs found

    On the hardness of learning sparse parities

    Get PDF
    This work investigates the hardness of computing sparse solutions to systems of linear equations over F_2. Consider the k-EvenSet problem: given a homogeneous system of linear equations over F_2 on n variables, decide if there exists a nonzero solution of Hamming weight at most k (i.e. a k-sparse solution). While there is a simple O(n^{k/2})-time algorithm for it, establishing fixed parameter intractability for k-EvenSet has been a notorious open problem. Towards this goal, we show that unless k-Clique can be solved in n^{o(k)} time, k-EvenSet has no poly(n)2^{o(sqrt{k})} time algorithm and no polynomial time algorithm when k = (log n)^{2+eta} for any eta > 0. Our work also shows that the non-homogeneous generalization of the problem -- which we call k-VectorSum -- is W[1]-hard on instances where the number of equations is O(k log n), improving on previous reductions which produced Omega(n) equations. We also show that for any constant eps > 0, given a system of O(exp(O(k))log n) linear equations, it is W[1]-hard to decide if there is a k-sparse linear form satisfying all the equations or if every function on at most k-variables (k-junta) satisfies at most (1/2 + eps)-fraction of the equations. In the setting of computational learning, this shows hardness of approximate non-proper learning of k-parities. In a similar vein, we use the hardness of k-EvenSet to show that that for any constant d, unless k-Clique can be solved in n^{o(k)} time there is no poly(m, n)2^{o(sqrt{k}) time algorithm to decide whether a given set of m points in F_2^n satisfies: (i) there exists a non-trivial k-sparse homogeneous linear form evaluating to 0 on all the points, or (ii) any non-trivial degree d polynomial P supported on at most k variables evaluates to zero on approx. Pr_{F_2^n}[P(z) = 0] fraction of the points i.e., P is fooled by the set of points

    Agnostic Learning of Disjunctions on Symmetric Distributions

    Full text link
    We consider the problem of approximating and learning disjunctions (or equivalently, conjunctions) on symmetric distributions over {0,1}n\{0,1\}^n. Symmetric distributions are distributions whose PDF is invariant under any permutation of the variables. We give a simple proof that for every symmetric distribution D\mathcal{D}, there exists a set of nO(log(1/ϵ))n^{O(\log{(1/\epsilon)})} functions S\mathcal{S}, such that for every disjunction cc, there is function pp, expressible as a linear combination of functions in S\mathcal{S}, such that pp ϵ\epsilon-approximates cc in 1\ell_1 distance on D\mathcal{D} or ExD[c(x)p(x)]ϵ\mathbf{E}_{x \sim \mathcal{D}}[ |c(x)-p(x)|] \leq \epsilon. This directly gives an agnostic learning algorithm for disjunctions on symmetric distributions that runs in time nO(log(1/ϵ))n^{O( \log{(1/\epsilon)})}. The best known previous bound is nO(1/ϵ4)n^{O(1/\epsilon^4)} and follows from approximation of the more general class of halfspaces (Wimmer, 2010). We also show that there exists a symmetric distribution D\mathcal{D}, such that the minimum degree of a polynomial that 1/31/3-approximates the disjunction of all nn variables is 1\ell_1 distance on D\mathcal{D} is Ω(n)\Omega( \sqrt{n}). Therefore the learning result above cannot be achieved via 1\ell_1-regression with a polynomial basis used in most other agnostic learning algorithms. Our technique also gives a simple proof that for any product distribution D\mathcal{D} and every disjunction cc, there exists a polynomial pp of degree O(log(1/ϵ))O(\log{(1/\epsilon)}) such that pp ϵ\epsilon-approximates cc in 1\ell_1 distance on D\mathcal{D}. This was first proved by Blais et al. (2008) via a more involved argument

    Sub-linear Upper Bounds on Fourier dimension of Boolean Functions in terms of Fourier sparsity

    Full text link
    We prove that the Fourier dimension of any Boolean function with Fourier sparsity ss is at most O(s2/3)O\left(s^{2/3}\right). Our proof method yields an improved bound of O~(s)\widetilde{O}(\sqrt{s}) assuming a conjecture of Tsang~\etal~\cite{tsang}, that for every Boolean function of sparsity ss there is an affine subspace of F2n\mathbb{F}_2^n of co-dimension O(\poly\log s) restricted to which the function is constant. This conjectured bound is tight upto poly-logarithmic factors as the Fourier dimension and sparsity of the address function are quadratically separated. We obtain these bounds by observing that the Fourier dimension of a Boolean function is equivalent to its non-adaptive parity decision tree complexity, and then bounding the latter

    Tailoring a coherent control solution landscape by linear transforms of spectral phase basis

    Get PDF
    Finding an optimal phase pattern in a multidimensional solution landscape becomes easier and faster if local optima are suppressed and contour lines are tailored towards closed convex patterns. Using wideband second harmonic generation as a coherent control test case, we show that a linear combination of spectral phase basis functions can result in such improvements and also in separable phase terms, each of which can be found independently. The improved shapes are attributed to a suppressed nonlinear shear, changing the relative orientation of contour lines. The first order approximation of the process shows a simple relation between input and output phase profiles, useful for pulse shaping at ultraviolet wavelengths
    corecore