459,324 research outputs found

    Distributed Event-Triggered Online Learning for Multi-Agent System Control using Gaussian Process Regression

    Full text link
    For the cooperative control of multi-agent systems with unknown dynamics, data-driven methods are commonly employed to infer models from the collected data. Due to the flexibility to model nonlinear functions and the existence of theoretical prediction error bound, Gaussian process (GP) regression is widely used in such control problems. Online learning, i.e. adding newly collected training data to the GP models, promises to improve control performance via improved predictions during the operation. In this paper, we propose a distributed event-triggered online learning algorithm for multi-agent system control. The proposed algorithm only employs locally available information from the neighbors and achieves a guaranteed overall control performance with desired tracking error bound. Moreover, the exclusion of the Zeno behavior for each agent is proved. Finally, the effectiveness of the proposed event-triggered online learning is demonstrated in simulations

    Learning Image-Conditioned Dynamics Models for Control of Under-actuated Legged Millirobots

    Full text link
    Millirobots are a promising robotic platform for many applications due to their small size and low manufacturing costs. Legged millirobots, in particular, can provide increased mobility in complex environments and improved scaling of obstacles. However, controlling these small, highly dynamic, and underactuated legged systems is difficult. Hand-engineered controllers can sometimes control these legged millirobots, but they have difficulties with dynamic maneuvers and complex terrains. We present an approach for controlling a real-world legged millirobot that is based on learned neural network models. Using less than 17 minutes of data, our method can learn a predictive model of the robot's dynamics that can enable effective gaits to be synthesized on the fly for following user-specified waypoints on a given terrain. Furthermore, by leveraging expressive, high-capacity neural network models, our approach allows for these predictions to be directly conditioned on camera images, endowing the robot with the ability to predict how different terrains might affect its dynamics. This enables sample-efficient and effective learning for locomotion of a dynamic legged millirobot on various terrains, including gravel, turf, carpet, and styrofoam. Experiment videos can be found at https://sites.google.com/view/imageconddy

    Online Simultaneous Semi-Parametric Dynamics Model Learning

    Get PDF
    Accurate models of robots' dynamics are critical for control, stability, motion optimization, and interaction. Semi-Parametric approaches to dynamics learning combine physics-based Parametric models with unstructured Non-Parametric regression with the hope to achieve both accuracy and generalizablity. In this paper we highlight the non-stationary problem created when attempting to adapt both Parametric and Non-Parametric components simultaneously. We present a consistency transform designed to compensate for this non-stationary effect, such that the contributions of both models can adapt simultaneously without adversely affecting the performance of the platform. Thus we are able to apply the Semi-Parametric learning approach for continuous iterative online adaptation, without relying on batch or offline updates. We validate the transform via a perfect virtual model as well as by applying the overall system on a Kuka LWR IV manipulator. We demonstrate improved tracking performance during online learning and show a clear transference of contribution between the two components with a learning bias towards the Parametric component.Comment: \c{opyright} 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Low-order coupled map lattices for estimation of wake patterns behind vibrating flexible cables

    Get PDF
    Fluid-structure interaction arises in a wide array of technological applications including naval and marine hydrodynamics, civil and wind engineering and flight vehicle aerodynamics. When a fluid flows over a bluff body such as a circular cylinder, the periodic vortex shedding in the wake causes fluctuating lift and drag forces on the body. This phenomenon can lead to fatigue damage of the structure due to large amplitude vibration. It is widely believed that the wake structures behind the structure determine the hydrodynamic forces acting on the structure and control of wake structures can lead to vibration control of the structure. Modeling this complex non-linear interaction requires coupling of the dynamics of the fluid and the structure. In this thesis, however, the vibration of the flexible cylinder is prescribed, and the focus is on modeling the fluid dynamics in its wake. Low-dimensional iterative circle maps have been found to predict the universal dynamics of a two-oscillator system such as the rigid cylinder wake. Coupled map lattice (CML)models that combine a series of low-dimensional circle maps with a diffusion model have previously predicted qualitative features of wake patterns behind freely vibrating cables at low Reynolds number. However, the simple nature of the CML models implies that there will always be unmodelled wake dynamics if a detailed, quantitative comparison is made with laboratory or simulated wake flows. Motivated by a desire to develop an improved CML model, we incorporate self-learning features into a new CML that is trained to precisely estimate wake patterns from target numerical simulations and experimental wake flows. The eventual goal is to have the CML learn from a laboratory flow in real time. A real-time self-learning CML capable of estimating experimental wake patterns could serve as a wake model in a future anticipated feedback control system designed to produce desired wake patterns. A new convective-diffusive map that includes additional wake dynamics is developed. Two different self-learning CML models, each capable of precisely estimating complex wake patterns, have been developed by considering additional dynamics from the convective-diffusive map. The new self-learning CML models use adaptive estimation schemes which seek to precisely estimate target wake patterns from numerical simulations and experiments. In the first self-learning CML, the estimator scheme uses a multi-variable least-squares algorithm to adaptively vary the spanwise velocity distribution in order to minimize the state error (difference between modeled and target wake patterns). The second self-learning model uses radial basis function neural networks as online approximators of the unmodelled dynamics. Additional unmodelled dynamics not present in the first self-learning CML model are considered here. The estimator model uses a combination of a multi-variable normalized least squares scheme and a projection algorithm to adaptively vary the neural network weights. Studies of this approach are conducted using wake patterns from spectral element based NEKTAR simulations of freely vibrating cable wakes at low Reynolds numbers on the order of 100. It is shown that the self-learning models accurately and efficiently estimate the simulated wake patterns within several shedding cycles. Next, experimental wake patterns behind different configurations of rigid cylinders were obtained. The self-learning CML models were then used for off-line estimation of the stored wake patterns. With the eventual goal of incorporating low-order CML models into a wake pattern control system in mind, in a related study control terms were added to the simple CML model in order to drive the wake to the desired target pattern of shedding. Proportional, adaptive proportional and non-linear control techniques were developed and their control efficiencies compared

    Vehicle Dynamics Modeling for Autonomous Racing Using Gaussian Processes

    Full text link
    Autonomous racing is increasingly becoming a proving ground for autonomous vehicle technology at the limits of its current capabilities. The most prominent examples include the F1Tenth racing series, Formula Student Driverless (FSD), Roborace, and the Indy Autonomous Challenge (IAC). Especially necessary, in high speed autonomous racing, is the knowledge of accurate racecar vehicle dynamics. The choice of the vehicle dynamics model has to be made by balancing the increasing computational demands in contrast to improved accuracy of more complex models. Recent studies have explored learning-based methods, such as Gaussian Process (GP) regression for approximating the vehicle dynamics model. However, these efforts focus on higher level constructs such as motion planning, or predictive control and lack both in realism and rigor of the GP modeling process, which is often over-simplified. This paper presents the most detailed analysis of the applicability of GP models for approximating vehicle dynamics for autonomous racing. In particular we construct dynamic, and extended kinematic models for the popular F1TENTH racing platform. We investigate the effect of kernel choices, sample sizes, racetrack layout, racing lines, and velocity profiles on the efficacy and generalizability of the learned dynamics. We conduct 400+ simulations on real F1 track layouts to provide comprehensive recommendations to the research community for training accurate GP regression for single-track vehicle dynamics of a racecar.Comment: 12 pages, 6 figures, 10 table
    • …
    corecore