159 research outputs found

    Improving reproducibility and reuse of modelling results in the life sciences

    Get PDF
    Research results are complex and include a variety of heterogeneous data. This entails major computational challenges to (i) to manage simulation studies, (ii) to ensure model exchangeability, stability and validity, and (iii) to foster communication between partners. I describe techniques to improve the reproducibility and reuse of modelling results. First, I introduce a method to characterise differences in computational models. Second, I present approaches to obtain shareable and reproducible research results. Altogether, my methods and tools foster exchange and reuse of modelling results.Die verteilte Entwicklung von komplexen Simulationsstudien birgt eine große Zahl an informationstechnischen Herausforderungen: (i) Modelle müssen verwaltet werden; (ii) Reproduzierbarkeit, Stabilität und Gültigkeit von Ergebnissen muss sichergestellt werden; und (iii) die Kommunikation zwischen Partnern muss verbessert werden. Ich stelle Techniken vor, um die Reproduzierbarkeit und Wiederverwendbarkeit von Modellierungsergebnissen zu verbessern. Meine Implementierungen wurden erfolgreich in internationalen Anwendungen integriert und fördern das Teilen von wissenschaftlichen Ergebnissen

    Challenges for Modeling and Simulation Methods in Systems Biology

    Get PDF
    Systems Biology is aimed at analyzing the behavior and interrelationships of biological systems and is characterized by combining experimentation, theory, and computation. Dedicated to exploring current challenges, the panel brings together people from a variety of disciplines whose perspectives illuminate diverse facets of Systems Biology and the challenges for modeling and simulation methods

    Annotation-based storage and retrieval of models and simulation descriptions in computational biology

    Get PDF
    This work aimed at enhancing reuse of computational biology models by identifying and formalizing relevant meta-information. One type of meta-information investigated in this thesis is experiment-related meta-information attached to a model, which is necessary to accurately recreate simulations. The main results are: a detailed concept for model annotation, a proposed format for the encoding of simulation experiment setups, a storage solution for standardized model representations and the development of a retrieval concept.Die vorliegende Arbeit widmete sich der besseren Wiederverwendung biologischer Simulationsmodelle. Ziele waren die Identifikation und Formalisierung relevanter Modell-Meta-Informationen, sowie die Entwicklung geeigneter Modellspeicherungs- und Modellretrieval-Konzepte. Wichtigste Ergebnisse der Arbeit sind ein detailliertes Modellannotationskonzept, ein Formatvorschlag für standardisierte Kodierung von Simulationsexperimenten in XML, eine Speicherlösung für Modellrepräsentationen sowie ein Retrieval-Konzept

    Data integration strategies for informing computational design in synthetic biology

    Get PDF
    PhD ThesisThe potential design space for biological systems is complex, vast and multidimensional. Therefore, effective large-scale synthetic biology requires computational design and simulation. By constraining this design space, the time- and cost-efficient design of biological systems can be facilitated. One way in which a tractable design space can be achieved is to use the extensive and growing amount of biological data available to inform the design process. By using existing knowledge design efforts can be focused on biologically plausible areas of design space. However, biological data is large, incomplete, heterogeneous, and noisy. Data must be integrated in a systematic fashion in order to maximise its benefit. To date, data integration has not been widely applied to design in synthetic biology. The aim of this project is to apply data integration techniques to facilitate the efficient design of novel biological systems. The specific focus is on the development and application of integration techniques for the design of genetic regulatory networks in the model bacterium Bacillus subtilis. A dataset was constructed by integrating data from a range of sources in order to capture existing knowledge about B. subtilis 168. The dataset is represented as a computationally-accessible, semantically-rich network which includes information concerning biological entities and their relationships. Also included are sequence-based features mined from the B. subtilis genome, which are a useful source of parts for synthetic biology. In addition, information about the interactions of these parts has been captured, in order to facilitate the construction of circuits with desired behaviours. This dataset was also modelled in the form of an ontology, providing a formal specification of parts and their interactions. The ontology is a major step towards the unification of the data required for modelling with a range of part catalogues specifically designed for synthetic biology. The data from the ontology is available to existing reasoners for implicit knowledge extraction. The ontology was applied to the automated identification of promoters, operators and coding sequences. Information from the ontology was also used to generate dynamic models of parts. The work described here contributed to the development of a formalism called Standard Virtual Parts (SVPs), which aims to represent models of biological parts in a standardised manner. SVPs comprise a mapping between biological parts and modular computational models. A genetic circuit designed at a part-level abstraction can be investigated in detail by analysing a circuit model composed of SVPs. The ontology was used to construct SVPs in the form of standard Systems Biology Markup Language models. These models are publicly available from a computationally-accessible repository, and include metadata which facilitates the computational composition of SVPs in order to create models of larger biological systems. To test a genetic circuit in vitro or in vivo, the genetics elements necessary to encode the enitites in the in silico model, and their associated behaviour, must be derived. Ultimately, this process results in the specification for synthesisable DNA sequence. For large models, particularly those that are produced computationally, the transformation process is challenging. To automate this process, a model-to-sequence conversion algorithm was developed. The algorithm was implemented as a Java application called MoSeC. Using MoSeC, both CellML and SBML models built with SVPs can be converted into DNA sequences ready to synthesise. Selection of the host bacterial cell for a synthetic genetic circuit is very important. In order not to interfere with the existing cellular machinery, orthogonal parts from other species are used since these parts are less likely to have undesired interactions with the host. In order to find orthogonal transcription factors (OTFs), and their target binding sequences, a subset of the data from the integrated B. subtilis dataset was used. B. subtilis gene regulatory networks were used to re-construct regulatory networks in closely related Bacillus species. The system, called BacillusRegNet, stores both experimental data for B. subtilis and homology predictions in other species. BacillusRegNet was mined to extract OTFs and their binding sequences, in order to facilitate the engineering of novel regulatory networks in other Bacillus species. Although the techniques presented here were demonstrated using B. subtilis, they can be applied to any other organism. The approaches and tools developed as part of this project demonstrate the utility of this novel integrated approach to synthetic biology.EPSRC: NSF: The Newcastle University School of Computing Science

    Current Challenges in Modeling Cellular Metabolism

    Get PDF
    Mathematical and computational models play an essential role in understanding the cellular metabolism. They are used as platforms to integrate current knowledge on a biological system and to systematically test and predict the effect of manipulations to such systems. The recent advances in genome sequencing techniques have facilitated the reconstruction of genome-scale metabolic networks for a wide variety of organisms from microbes to human cells. These models have been successfully used in multiple biotechnological applications. Despite these advancements, modeling cellular metabolism still presents many challenges. The aim of this Research Topic is not only to expose and consolidate the state-of-the-art in metabolic modeling approaches, but also to push this frontier beyond the current edge through the introduction of innovative solutions. The articles presented in this e-book address some of the main challenges in the field, including the integration of different modeling formalisms, the integration of heterogeneous data sources into metabolic models, explicit representation of other biological processes during phenotype simulation, and standardization efforts in the representation of metabolic models and simulation results

    Systems biology and the virtual physiological human

    Get PDF
    The virtual physiological human (VPH) initiative is intended to support the development of patient‐specific computer models and their application in personalised and predictive healthcare. The VPH, a core target of the European Commission's 7th Framework Programme, will serve as a ‘methodological and technological framework that, once established, will enable collaborative investigation of the human body as a single complex system’ (http://www.europhysiome.org/roadmap/). As such, the VPH initiative constitutes an integral part of the international Physiome Project (http://www.physiome.org.nz/), a worldwide public domain effort to develop a computational framework for the quantitative description of biological processes in living systems across all relevant levels of structural and functional integration, from molecule to organism, including the human (Kohl et al, 2000; Bassingthwaighte et al, 2009). So, what is the connection between this grand challenge and systems biology? To explore this, we must first agree on what we take systems biology to mean

    A Biophysical Model of the Mitochondrial Respiratory System and Oxidative Phosphorylation

    Get PDF
    A computational model for the mitochondrial respiratory chain that appropriately balances mass, charge, and free energy transduction is introduced and analyzed based on a previously published set of data measured on isolated cardiac mitochondria. The basic components included in the model are the reactions at complexes I, III, and IV of the electron transport system, ATP synthesis at F(1)F(0) ATPase, substrate transporters including adenine nucleotide translocase and the phosphate–hydrogen co-transporter, and cation fluxes across the inner membrane including fluxes through the K(+)/H(+) antiporter and passive H(+) and K(+) permeation. Estimation of 16 adjustable parameter values is based on fitting model simulations to nine independent data curves. The identified model is further validated by comparison to additional datasets measured from mitochondria isolated from rat heart and liver and observed at low oxygen concentration. To obtain reasonable fits to the available data, it is necessary to incorporate inorganic-phosphate-dependent activation of the dehydrogenase activity and the electron transport system. Specifically, it is shown that a model incorporating phosphate-dependent activation of complex III is able to reasonably reproduce the observed data. The resulting validated and verified model provides a foundation for building larger and more complex systems models and investigating complex physiological and pathophysiological interactions in cardiac energetics

    Doctor of Philosophy

    Get PDF
    dissertationSynthetic biology is a new field in which engineers, biologists, and chemists are working together to transform genetic engineering into an advanced engineering discipline, one in which the design and construction of novel genetic circuits are made possible through the application of engineering principles. This dissertation explores two engineering strategies to address the challenges of working with genetic technology, namely the development of standards for describing genetic components and circuits at separate yet connected levels of detail and the use of Genetic Design Automation (GDA) software tools to simplify and speed up the process of optimally designing genetic circuits. Its contributions to the field of synthetic biology include (1) a proposal for the next version of the Synthetic Biology Open Language (SBOL), an existing standard for specifying and exchanging genetic designs electronically, and (2) a GDA work ow that enables users of the software tool iBioSim to create an abstract functional specication, automatically select genetic components that satisfy the specication from a design library, and compose the selected components into a standardized genetic circuit design for subsequent analysis and physical construction. Ultimately, this dissertation demonstrates how existing techniques and concepts from electrical and computer engineering can be adapted to overcome the challenges of genetic design and is an example of what is possible when working with publicly available standards for genetic design
    corecore