24 research outputs found

    Improved Garbled Circuit Building Blocks and Applications to Auctions and Computing Minima

    Get PDF
    We consider generic Garbled Circuit (GC)-based techniques for Secure Function Evaluation (SFE) in the semi-honest model. We describe efficient GC constructions for addition, subtraction, multiplication, and comparison functions. Our circuits for subtraction and comparison are approximately two times smaller (in terms of garbled tables) than previous constructions. This implies corresponding computation and communication improvements in SFE of functions using our efficient building blocks. The techniques rely on recently proposed ``free XOR\u27\u27 GC technique. Further, we present concrete and detailed improved GC protocols for the problem of secure integer comparison, and related problems of auctions, minimum selection, and minimal distance. Performance improvement comes both from building on our efficient basic blocks and several problem-specific GC optimizations. We provide precise cost evaluation of our constructions, which serves as a baseline for future protocols

    SHE based Non Interactive Privacy Preserving Biometric Authentication Protocols

    Get PDF
    Being unique and immutable for each person, biometric signals are widely used in access control systems. While biometric recognition appeases concerns about password's theft or loss, at the same time it raises concerns about individual privacy. Central servers store several enrolled biometrics, hence security against theft must be provided during biometric transmission and against those who have access to the database. If a server's database is compromised, other systems using the same biometric templates could also be compromised as well. One solution is to encrypt the stored templates. Nonetheless, when using traditional cryptosystem, data must be decrypted before executing the protocol, leaving the database vulnerable. To overcame this problem and protect both the server and the client, biometrics should be processed while encrypted. This is possible by using secure two-party computation protocols, mainly based on Garbled Circuits (GC) and additive Homomorphic Encryption (HE). Both GC and HE based solutions are efficient yet interactive, meaning that the client takes part in the computation. Instead in this paper we propose a non-interactive protocol for privacy preserving biometric authentication based on a Somewhat Homomorphic Encryption (SHE) scheme, modified to handle integer values, and also suggest a blinding method to protect the system from spoofing attacks. Although our solution is not as efficient as the ones based on GC or HE, the protocol needs no interaction, moving the computation entirely on the server side and leaving only inputs encryption and outputs decryption to the client

    Enabling Privacy-preserving Auctions in Big Data

    Full text link
    We study how to enable auctions in the big data context to solve many upcoming data-based decision problems in the near future. We consider the characteristics of the big data including, but not limited to, velocity, volume, variety, and veracity, and we believe any auction mechanism design in the future should take the following factors into consideration: 1) generality (variety); 2) efficiency and scalability (velocity and volume); 3) truthfulness and verifiability (veracity). In this paper, we propose a privacy-preserving construction for auction mechanism design in the big data, which prevents adversaries from learning unnecessary information except those implied in the valid output of the auction. More specifically, we considered one of the most general form of the auction (to deal with the variety), and greatly improved the the efficiency and scalability by approximating the NP-hard problems and avoiding the design based on garbled circuits (to deal with velocity and volume), and finally prevented stakeholders from lying to each other for their own benefit (to deal with the veracity). We achieve these by introducing a novel privacy-preserving winner determination algorithm and a novel payment mechanism. Additionally, we further employ a blind signature scheme as a building block to let bidders verify the authenticity of their payment reported by the auctioneer. The comparison with peer work shows that we improve the asymptotic performance of peer works' overhead from the exponential growth to a linear growth and from linear growth to a logarithmic growth, which greatly improves the scalability

    The Secure Link Prediction Problem

    Get PDF
    Link Prediction is an important and well-studied problem for social networks. Given a snapshot of a graph, the link prediction problem predicts which new interactions between members are most likely to occur in the near future. As networks grow in size, data owners are forced to store the data in remote cloud servers which reveals sensitive information about the network. The graphs are therefore stored in encrypted form. We study the link prediction problem on encrypted graphs. To the best of our knowledge, this secure link prediction problem has not been studied before. We use the number of common neighbors for prediction. We present three algorithms for the secure link prediction problem. We design prototypes of the schemes and formally prove their security. We execute our algorithms in real-life datasets.Comment: This has been accepted for publication in Advances in Mathematics of Communications (AMC) journa

    Anonymous subject identification and privacy information management in video surveillance

    Get PDF
    The widespread deployment of surveillance cameras has raised serious privacy concerns, and many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. Of equal importance are the privacy and efficiency of techniques to first, identify those individuals for privacy protection and second, provide access to original surveillance video contents for security analysis. In this paper, we propose an anonymous subject identification and privacy data management system to be used in privacy-aware video surveillance. The anonymous subject identification system uses iris patterns to identify individuals for privacy protection. Anonymity of the iris-matching process is guaranteed through the use of a garbled-circuit (GC)-based iris matching protocol. A novel GC complexity reduction scheme is proposed by simplifying the iris masking process in the protocol. A user-centric privacy information management system is also proposed that allows subjects to anonymously access their privacy information via their iris patterns. The system is composed of two encrypted-domain protocols: The privacy information encryption protocol encrypts the original video records using the iris pattern acquired during the subject identification phase; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of our framework

    Derin Öğrenme Modellerinde Mahremiyet ve Güvenlik Üzerine Bir Derleme Çalışması

    Get PDF
    Son dönemlerde derin öğrenmedeki devrim niteliğindeki gelişmeler ile birlikte yapay zekaya yönelik beklentiler gün geçtikçe artmaktadır. Konuşma tanıma, doğal dil işleme (NLP), görüntü işleme gibi birçok alanda etkin bir şekilde uygulanabilen bir araştırma alanı olan derin öğrenme klasik makine öğrenmesi ile karşılaştırıldığında daha yüksek başarı göstermektedir. Derin öğrenme ile geliştirilen modellerde eğitim ve tahminleme sırasında büyük miktarda veri kullanılmakta ve kullanılan veriler kişisel verilerden oluşabilmektedir. Bu verilerin işlenmesi sırasında kişisel verilerin korunması kanununa (KVKK) aykırı olmaması oldukça önemlidir. Bu nedenle verilerin gizliliği ve güvenliğinin sağlanması oldukça önemli bir husustur. Bu çalışmada, derin öğrenme modelleri geliştirilirken yaygın kullanılan mimariler verilmiştir. Verilerin gizliliği ve güvenliğini artırmak için literatürde yaygın olarak karşılaşılan güvenli çok partili hesaplama, diferansiyel mahremiyet, garbled devre protokolü ve homomorfik şifreleme araçları özetlenmiştir. Çeşitli sistem tasarımlarında kullanılan bu araçların yer aldığı güncel çalışmalar taranmıştır. Bu çalışmalar, derin öğrenme modelinin eğitim ve tahminleme aşamasında olmak üzere iki kategoride incelenmiştir. Literatürdeki çeşitli modeller üzerinde uygulanabilen güncel saldırılar ve bu saldırılardan korunmak amacıyla geliştirilen yöntemler verilmiştir. Ayrıca, güncel araştırma alanları belirlenmiştir. Buna göre, gelecekteki araştırma yönü kriptografik temelli yöntemlerin karmaşıklığının azaltılması ve geliştirilen modelin güvenilirliğini belirlemek için çeşitli ölçme ve değerlendirme yöntemlerinin geliştirilmesi yönünde olabilir
    corecore