33 research outputs found

    COMPARATIVE STUDY OF CHAOTIC SYSTEM FOR ENCRYPTION

    Get PDF
    Chaotic systems leverage their inherent complexity and unpredictability to generate cryptographic keys, enhancing the security of encryption algorithms. This paper presents a comparative study of 13 chaotic keymaps. Several evaluation metrics, including keyspace size, dimensions, entropy, statistical properties, sensitivity to initial conditions, security level, practical implementation, and adaptability to cloud computing, are utilized to compare the keymaps. Keymaps such as Logistic, Lorenz, and Henon demonstrate robustness and high-security levels, offering large key space sizes and resistance to attacks. Their efficient implementation in a cloud computing environment further validates their suitability for real-world encryption scenarios. The context of the study focuses on the role of the key in encryption and provides a brief specification of each map to assess the effectiveness, security, and suitability of the popular chaotic keymaps for encryption applications. The study also discusses the security assessment of resistance to the popular cryptographic attacks: brute force, known plaintext, chosen plaintext, and side channel. The findings of this comparison reveal the Lorenz Map is the best for the cloud environment based on a specific scenario

    Security Analysis of a Color Image Encryption Scheme Based on a Fractional‑Order Hyperchaotic System

    Get PDF
    In 2022, Hosny et al. introduce an image encryption scheme that employs a fractional-order chaotic system. Their approach uses the hyper-chaotic system to generate the system\u27s main parameter, namely a secret permutation which is dependent on the size and the sum of the pixels of the source image. According to the authors, their scheme offers adequate security (i.e. 498498 bits) for transmitting color images over unsecured channels. Nevertheless, in this paper we show that the scheme\u27s security is independent on the secret parameters used to initialize the hyper-chaotic system. More precisely, we provide a brute-force attack whose complexity is O(210.57(WH)3)\mathcal O(2^{10.57}(WH)^3) and needs 29.57WH2^{9.57}WH oracle queries, where WW and HH are the width and the height of the encrypted image. For example, for an image of size 4000×300004000 \times 30000 (1212 megapixels image) we obtain a security margin of 81.1181.11 bits, which is six times lower than the claimed bound. To achieve this result, we present two cryptanalytic attacks, namely a chosen plaintext attack and a chosen ciphertext attack

    COMPARATIVE STUDY OF CHAOTIC SYSTEM FOR ENCRYPTION

    Get PDF
    Chaotic systems leverage their inherent complexity and unpredictability to generate cryptographic keys, enhancing the security of encryption algorithms. This paper presents a comparative study of 13 chaotic keymaps. Several evaluation metrics, including keyspace size, dimensions, entropy, statistical properties, sensitivity to initial conditions, security level, practical implementation, and adaptability to cloud computing, are utilized to compare the keymaps. Keymaps such as Logistic, Lorenz, and Henon demonstrate robustness and high-security levels, offering large key space sizes and resistance to attacks. Their efficient implementation in a cloud computing environment further validates their suitability for real-world encryption scenarios. The context of the study focuses on the role of the key in encryption and provides a brief specification of each map to assess the effectiveness, security, and suitability of the popular chaotic keymaps for encryption applications. The study also discusses the security assessment of resistance to the popular cryptographic attacks: brute force, known plaintext, chosen plaintext, and side channel. The findings of this comparison reveal the Lorenz Map is the best for the cloud environment based on a specific scenario

    Entropy in Image Analysis III

    Get PDF
    Image analysis can be applied to rich and assorted scenarios; therefore, the aim of this recent research field is not only to mimic the human vision system. Image analysis is the main methods that computers are using today, and there is body of knowledge that they will be able to manage in a totally unsupervised manner in future, thanks to their artificial intelligence. The articles published in the book clearly show such a future

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue

    Cyber Security and Critical Infrastructures 2nd Volume

    Get PDF
    The second volume of the book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles, including an editorial that explains the current challenges, innovative solutions and real-world experiences that include critical infrastructure and 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems
    corecore