2 research outputs found

    OPTIMAL POWER MANAGEMENT OF DGS AND DSTATCOM USING IMPROVED ALI BABA AND THE FORTY THIEVES OPTIMIZER

    Get PDF
    In this study an improved Ali Baba and the forty thieves Optimizer (IAFT) is proposed and successfully adapted and applied to enhance the technical performances of radial distribution network (RDN). The standard AFT governed by two sensible parameters to balance the exploration and the exploitation stages. In the proposed variant a modification is introduced using sine and cosine functions to create flexible balance between Intensification and diversification during search process. The proposed variant namely IAFT applied to solve various single and combined objective functions such as the improvement of total power losses (TPL), the minimization of total voltage deviation and the maximization of the loading capacity (LC) under fixed load and considering the random aspect of loads. The exchange of active powers is elaborated by integration of multi distribution generation based photovoltaic systems (PV), otherwise the optimal management of reactive power is achieved by the installation of multi DSTATCOM. The efficiency and robustness of the proposed variant validated on two RDN, the 33-Bus and the 69-Bus. The qualities of objective functions achieved and the statistical analysis elaborated compared to results achieved using several recent metaheuristic methods demonstrate the competitive aspect of the proposed IAFT in solving with accuracy various practical problems related to optimal power management of RDN

    Improved Coyote Optimization Algorithm for Optimally Installing Solar Photovoltaic Distribution Generation Units in Radial Distribution Power Systems

    No full text
    This paper proposes an improved coyote optimization algorithm (ICOA) for optimizing the location and sizing of solar photovoltaic distribution generation units (PVDGUs) in radial distribution systems. In the considered problem, four single objectives consisting of total power losses, capacity of all PVDGUs, voltage profile index, and harmonic distortions are minimized independently while satisfying branch current limits, voltage limits, and harmonic distortion limits exactly and simultaneously. The performance of the proposed ICOA method has been improved significantly since two improvements were carried out on the two new solution generations of the conventional coyote optimization algorithm (COA). By finding four single objectives from two IEEE distribution power systems with 33 buses and 69 buses, the impact of each proposed improvement and two proposed improvements on the real performance of ICOA has been investigated. ICOA was superior to COA in terms of capability of finding higher quality solutions, more stable search ability, and faster convergence speed. Furthermore, we have also applied five other metaheuristic algorithms consisting of biogeography-based optimization (BBO), genetic algorithm (GA), particle swarm optimization algorithm (PSO), sunflower optimization (SFO), and salp swarm algorithm (SSA) for dealing with the same problem and evaluating further performance of ICOA. The result comparisons have also indicated the outstanding performance of ICOA because it could find much better results than these methods, especially SFO, SSA, and GA. Consequently, the proposed ICOA is a very effective method for finding the optimal location and capacity of PVDGUs in radial distribution power systems
    corecore