7 research outputs found

    Hybrid Modeling of Deformable Linear Objects for Their Cooperative Transportation by Teams of Quadrotors

    Get PDF
    his paper deals with the control of a team of unmanned air vehicles (UAVs), specifically quadrotors, for which their mission is the transportation of a deformable linear object (DLO), i.e., a cable, hose or similar object in quasi-stationary state, while cruising towards destination. Such missions have strong industrial applications in the transportation of hoses or power cables to specific locations, such as the emergency power or water supply in hazard situations such as fires or earthquake damaged structures. This control must be robust to withstand strong and sudden wind disturbances and remain stable after aggressive maneuvers, i.e., sharp changes of direction or acceleration. To cope with these, we have previously developed the online adaptation of the proportional derivative (PD) controllers of the quadrotors thrusters, implemented by a fuzzy logic rule system that experienced adaptation by a stochastic gradient rule. However, sagging conditions appearing when the transporting drones are too close or too far away induce singularities in the DLO catenary models, breaking apart the control system. The paper鈥檚 main contribution is the formulation of the hybrid selective model of the DLO sections as either catenaries or parabolas, which allows us to overcome these sagging conditions. We provide the specific decision rule to shift between DLO models. Simulation results demonstrate the performance of the proposed approach under stringent conditions.This work has been partially supported by spanish MICIN project PID2020-116346GB-I00, and project KK-2021/00070 of the Elkartek 2021 funding program of the Basque Government. This project has received funding from the European Union鈥檚 Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 777720

    Quadrotor team modeling and control for DLO transportation

    Get PDF
    94 p.Esta Tesis realiza una propuesta de un modelado din谩mico para el transporte de s贸lidos lineales deformables (SLD) mediante un equipo de cuadric贸pteros. En este modelo intervienen tres factores: - Modelado din谩mico del s贸lido lineal a transportar. - Modelo din谩mico del cuadric贸ptero para que tenga en cuenta la din谩mica pasiva y los efectos del SLD. - Estrategia de control para un transporte e ciente y robusto. Diferenciamos dos tareas principales: (a) lograr una con guraci贸n cuasiestacionaria de una distribuci贸n de carga equivalente a transportar entre todos los robots. (b) Ejecutar el transporte en un plano horizontal de todo el sistema. El transporte se realiza mediante una con guraci贸n de seguir al l铆der en columna, pero los cuadric贸pteros individualmente tienen que ser su cientemente robustos para afrontar todas las no-linealidades provocadas por la din谩mica del SLD y perturbaciones externas, como el viento. Los controladores del cuadric贸ptero se han dise帽ado para asegurar la estabilidad del sistema y una r谩pida convergencia del sistema. Se han comparado y testeado estrategias de control en tiempo real y no-real para comprobar la bondad y capacidad de ajuste a las condiciones din谩micas cambiantes del sistema. Tambi茅n se ha estudiado la escalabilidad del sistema

    Quadrotor team modeling and control for DLO transportation

    Get PDF
    94 p.Esta Tesis realiza una propuesta de un modelado din谩mico para el transporte de s贸lidos lineales deformables (SLD) mediante un equipo de cuadric贸pteros. En este modelo intervienen tres factores: - Modelado din谩mico del s贸lido lineal a transportar. - Modelo din谩mico del cuadric贸ptero para que tenga en cuenta la din谩mica pasiva y los efectos del SLD. - Estrategia de control para un transporte e ciente y robusto. Diferenciamos dos tareas principales: (a) lograr una con guraci贸n cuasiestacionaria de una distribuci贸n de carga equivalente a transportar entre todos los robots. (b) Ejecutar el transporte en un plano horizontal de todo el sistema. El transporte se realiza mediante una con guraci贸n de seguir al l铆der en columna, pero los cuadric贸pteros individualmente tienen que ser su cientemente robustos para afrontar todas las no-linealidades provocadas por la din谩mica del SLD y perturbaciones externas, como el viento. Los controladores del cuadric贸ptero se han dise帽ado para asegurar la estabilidad del sistema y una r谩pida convergencia del sistema. Se han comparado y testeado estrategias de control en tiempo real y no-real para comprobar la bondad y capacidad de ajuste a las condiciones din谩micas cambiantes del sistema. Tambi茅n se ha estudiado la escalabilidad del sistema

    Quadrotor team modeling and control for DLO transportation

    Get PDF
    94 p.Esta Tesis realiza una propuesta de un modelado din谩mico para el transporte de s贸lidos lineales deformables (SLD) mediante un equipo de cuadric贸pteros. En este modelo intervienen tres factores: - Modelado din谩mico del s贸lido lineal a transportar. - Modelo din谩mico del cuadric贸ptero para que tenga en cuenta la din谩mica pasiva y los efectos del SLD. - Estrategia de control para un transporte e ciente y robusto. Diferenciamos dos tareas principales: (a) lograr una con guraci贸n cuasiestacionaria de una distribuci贸n de carga equivalente a transportar entre todos los robots. (b) Ejecutar el transporte en un plano horizontal de todo el sistema. El transporte se realiza mediante una con guraci贸n de seguir al l铆der en columna, pero los cuadric贸pteros individualmente tienen que ser su cientemente robustos para afrontar todas las no-linealidades provocadas por la din谩mica del SLD y perturbaciones externas, como el viento. Los controladores del cuadric贸ptero se han dise帽ado para asegurar la estabilidad del sistema y una r谩pida convergencia del sistema. Se han comparado y testeado estrategias de control en tiempo real y no-real para comprobar la bondad y capacidad de ajuste a las condiciones din谩micas cambiantes del sistema. Tambi茅n se ha estudiado la escalabilidad del sistema

    A survey of single and multi-UAV aerial manipulation

    Get PDF
    Aerial manipulation has direct application prospects in environment, construction, forestry, agriculture, search, and rescue. It can be used to pick and place objects and hence can be used for transportation of goods. Aerial manipulation can be used to perform operations in environments inaccessible or unsafe for human workers. This paper is a survey of recent research in aerial manipulation. The aerial manipulation research has diverse aspects, which include the designing of aerial manipulation platforms, manipulators, grippers, the control of aerial platform and manipulators, the interaction of aerial manipulator with the environment, through forces and torque. In particular, the review paper presents the survey of the airborne platforms that can be used for aerial manipulation including the new aerial platforms with aerial manipulation capability. We also classified the aerial grippers and aerial manipulators based on their designs and characteristics. The recent contributions regarding the control of the aerial manipulator platform is also discussed. The environment interaction of aerial manipulators is also surveyed which includes, different strategies used for end-effectors interaction with the environment, application of force, application of torque and visual servoing. A recent and growing interest of researchers about the multi-UAV collaborative aerial manipulation was also noticed and hence different strategies for collaborative aerial manipulation are also surveyed, discussed and critically analyzed. Some key challenges regarding outdoor aerial manipulation and energy constraints in aerial manipulation are also discussed

    Optimal Control of Multiple Quadrotors for Transporting a Cable Suspended Payload

    Get PDF
    In this thesis, the main aim is to improve the flight control performance for a cable suspended payload with single and two quadrotors based on optimised control techniques. The study utilised optimal controllers, such as the Linear Quadratic Regulator LQR, the Iterative based LQR (ILQR), the Model Predictive Control MPC and the dynamic game controller to solve tracking control problems in terms of stabilisation, accuracy, constraints and collision avoidance. The LQR control was applied to the system as the first control method and compared with the classical Proportional-Derivative controller PD. It was used to achieve the load path tracking performance for single and two quadrotors with a cable slung load. The second controller was ILQR, which was developed based on the LQR control method to deal with the model nonlinearity. The MPC technique was also applied to the linearised nonlinear model LMPC of two quadrotors with a payload suspended by cables and compared with a nonlinear MPC (NMPC). Both MPC controllers LMPC and NMPC considered the constraints imposed on the system states and control inputs. The dynamic game control method was developed based on an incentive strategy for a leader-follower framework with the consideration of different optimal cost functions. It was applied to the linearised nonlinear model. Selecting these control techniques led to a number of achievements. Firstly, they improved the system performance in terms of achieving the system stability and reducing the steady-state errors. Secondly, the system parameter uncertainties were taken into consideration by utilising the ILQR controller. Thirdly, the MPC controllers guaranteed the handling of constraints and external disturbances in linear and nonlinear systems. Finally, avoiding collision between the leader and follower robots was achieved by applying the dynamic game controller. The controllers were tested in MATLAB simulation and verified for various desired predefined trajectories. In real experiments, these controllers were used as high-level controllers, which produce the optimised trajectory points. Then a low-level controller (PD controller) was used to follow the optimised trajectory points

    Energy distribution in dual-UAV collaborative transportation through load sharing

    Get PDF
    In this paper, a novel dual-UAV collaborative aerial transport strategy based on energy distribution and load sharing is proposed. This paper presents the first experimental demonstration of dual-UAV collaborative aerial transport while distributing power consumption. The demonstration is performed while distributing the power consumption between two drones sharing a load based on their battery state of charge. A numerical model of the dual-hex-rotor-payload is used to validate the proposed strategy. Numerical and hardware tests were conducted to demonstrate the load distribution using multiple UAV with certain spatial configurations. Finally, collaborative aerial transport test scenarios are performed numerically and experimentally. The simulation and experimental results show the effectiveness and applicability of the proposed strategy
    corecore