3,111 research outputs found

    Degeneracy between mass and spin in black-hole-binary waveforms

    Get PDF
    We explore the degeneracy between mass and spin in gravitational waveforms emitted by black-hole binary coalescences. We focus on spin-aligned waveforms and obtain our results using phenomenological models that were tuned to numerical-relativity simulations. A degeneracy is known for low-mass binaries (particularly neutron-star binaries), where gravitational-wave detectors are sensitive to only the inspiral phase, and the waveform can be modelled by post-Newtonian theory. Here, we consider black-hole binaries, where detectors will also be sensitive to the merger and ringdown, and demonstrate that the degeneracy persists across a broad mass range. At low masses, the degeneracy is between mass ratio and total spin, with chirp mass accurately determined. At higher masses, the degeneracy persists but is not so clearly characterised by constant chirp mass as the merger and ringdown become more significant. We consider the importance of this degeneracy both for performing searches (including searches where only non-spinning templates are used) and in parameter extraction from observed systems. We compare observational capabilities between the early (~2015) and final (2018 onwards) versions of the Advanced LIGO detector.Comment: 11 pages, 9 figure

    Basic Parameter Estimation of Binary Neutron Star Systems by the Advanced LIGO/Virgo Network

    Get PDF
    Within the next five years, it is expected that the Advanced LIGO/Virgo network will have reached a sensitivity sufficient to enable the routine detection of gravitational waves. Beyond the initial detection, the scientific promise of these instruments relies on the effectiveness of our physical parameter estimation capabilities. The majority of this effort has been towards the detection and characterization of gravitational waves from compact binary coalescence, e.g. the coalescence of binary neutron stars. While several previous studies have investigated the accuracy of parameter estimation with advanced detectors, the majority have relied on approximation techniques such as the Fisher Matrix. Here we report the statistical uncertainties that will be achievable for optimal detection candidates (SNR = 20) using the full parameter estimation machinery developed by the LIGO/Virgo Collaboration via Markov-Chain Monte Carlo methods. We find the recovery of the individual masses to be fractionally within 9% (15%) at the 68% (95%) credible intervals for equal-mass systems, and within 1.9% (3.7%) for unequal-mass systems. We also find that the Advanced LIGO/Virgo network will constrain the locations of binary neutron star mergers to a median uncertainty of 5.1 deg^2 (13.5 deg^2) on the sky. This region is improved to 2.3 deg^2 (6 deg^2) with the addition of the proposed LIGO India detector to the network. We also report the average uncertainties on the luminosity distances and orbital inclinations of ideal detection candidates that can be achieved by different network configurations.Comment: Second version: 15 pages, 9 figures, accepted in Ap

    Low-latency analysis pipeline for compact binary coalescences in the advanced gravitational wave detector era

    Full text link
    The multi-band template analysis (MBTA) pipeline is a low-latency coincident analysis pipeline for the detection of gravitational waves (GWs) from compact binary coalescences. MBTA runs with a low computational cost, and can identify candidate GW events online with a sub-minute latency. The low computational running cost of MBTA also makes it useful for data quality studies. Events detected by MBTA online can be used to alert astronomical partners for electromagnetic follow-up. We outline the current status of MBTA and give details of recent pipeline upgrades and validation tests that were performed in preparation for the first advanced detector observing period. The MBTA pipeline is ready for the outset of the advanced detector era and the exciting prospects it will bring.Comment: 18 pages, 10 figure

    Detecting compact binary coalescences with seedless clustering

    Get PDF
    Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors. Although matched filtering is the optimal search method for well-modeled systems, alternative detection strategies can be used to guard against theoretical errors (e.g., involving new physics and/or assumptions about spin/eccentricity) while providing a measure of redundancy. In previous work, we showed how "seedless clustering" can be used to detect long-lived gravitational-wave transients in both targeted and all-sky searches. In this paper, we apply seedless clustering to the problem of low-mass (Mtotal≤10M⊙M_\text{total}\leq10M_\odot) compact binary coalescences for both spinning and eccentric systems. We show that seedless clustering provides a robust and computationally efficient method for detecting low-mass compact binaries
    • …
    corecore