16 research outputs found

    Improved Asymmetric Locality Sensitive Hashing (ALSH) for Maximum Inner Product Search (MIPS)

    Full text link
    Recently it was shown that the problem of Maximum Inner Product Search (MIPS) is efficient and it admits provably sub-linear hashing algorithms. Asymmetric transformations before hashing were the key in solving MIPS which was otherwise hard. In the prior work, the authors use asymmetric transformations which convert the problem of approximate MIPS into the problem of approximate near neighbor search which can be efficiently solved using hashing. In this work, we provide a different transformation which converts the problem of approximate MIPS into the problem of approximate cosine similarity search which can be efficiently solved using signed random projections. Theoretical analysis show that the new scheme is significantly better than the original scheme for MIPS. Experimental evaluations strongly support the theoretical findings.Comment: arXiv admin note: text overlap with arXiv:1405.586

    When Hashing Met Matching: Efficient Spatio-Temporal Search for Ridesharing

    Full text link
    Carpooling, or sharing a ride with other passengers, holds immense potential for urban transportation. Ridesharing platforms enable such sharing of rides using real-time data. Finding ride matches in real-time at urban scale is a difficult combinatorial optimization task and mostly heuristic approaches are applied. In this work, we mathematically model the problem as that of finding near-neighbors and devise a novel efficient spatio-temporal search algorithm based on the theory of locality sensitive hashing for Maximum Inner Product Search (MIPS). The proposed algorithm can find kk near-optimal potential matches for every ride from a pool of nn rides in time O(n1+ρ(k+logn)logk)O(n^{1 + \rho} (k + \log n) \log k) and space O(n1+ρlogk)O(n^{1 + \rho} \log k) for a small ρ<1\rho < 1. Our algorithm can be extended in several useful and interesting ways increasing its practical appeal. Experiments with large NY yellow taxi trip datasets show that our algorithm consistently outperforms state-of-the-art heuristic methods thereby proving its practical applicability

    On Symmetric and Asymmetric LSHs for Inner Product Search

    Full text link
    We consider the problem of designing locality sensitive hashes (LSH) for inner product similarity, and of the power of asymmetric hashes in this context. Shrivastava and Li argue that there is no symmetric LSH for the problem and propose an asymmetric LSH based on different mappings for query and database points. However, we show there does exist a simple symmetric LSH that enjoys stronger guarantees and better empirical performance than the asymmetric LSH they suggest. We also show a variant of the settings where asymmetry is in-fact needed, but there a different asymmetric LSH is required.Comment: 11 pages, 3 figures, In Proceedings of The 32nd International Conference on Machine Learning (ICML

    When Hashes Met Wedges: A Distributed Algorithm for Finding High Similarity Vectors

    Full text link
    Finding similar user pairs is a fundamental task in social networks, with numerous applications in ranking and personalization tasks such as link prediction and tie strength detection. A common manifestation of user similarity is based upon network structure: each user is represented by a vector that represents the user's network connections, where pairwise cosine similarity among these vectors defines user similarity. The predominant task for user similarity applications is to discover all similar pairs that have a pairwise cosine similarity value larger than a given threshold τ\tau. In contrast to previous work where τ\tau is assumed to be quite close to 1, we focus on recommendation applications where τ\tau is small, but still meaningful. The all pairs cosine similarity problem is computationally challenging on networks with billions of edges, and especially so for settings with small τ\tau. To the best of our knowledge, there is no practical solution for computing all user pairs with, say τ=0.2\tau = 0.2 on large social networks, even using the power of distributed algorithms. Our work directly addresses this challenge by introducing a new algorithm --- WHIMP --- that solves this problem efficiently in the MapReduce model. The key insight in WHIMP is to combine the "wedge-sampling" approach of Cohen-Lewis for approximate matrix multiplication with the SimHash random projection techniques of Charikar. We provide a theoretical analysis of WHIMP, proving that it has near optimal communication costs while maintaining computation cost comparable with the state of the art. We also empirically demonstrate WHIMP's scalability by computing all highly similar pairs on four massive data sets, and show that it accurately finds high similarity pairs. In particular, we note that WHIMP successfully processes the entire Twitter network, which has tens of billions of edges

    Scalable and Sustainable Deep Learning via Randomized Hashing

    Full text link
    Current deep learning architectures are growing larger in order to learn from complex datasets. These architectures require giant matrix multiplication operations to train millions of parameters. Conversely, there is another growing trend to bring deep learning to low-power, embedded devices. The matrix operations, associated with both training and testing of deep networks, are very expensive from a computational and energy standpoint. We present a novel hashing based technique to drastically reduce the amount of computation needed to train and test deep networks. Our approach combines recent ideas from adaptive dropouts and randomized hashing for maximum inner product search to select the nodes with the highest activation efficiently. Our new algorithm for deep learning reduces the overall computational cost of forward and back-propagation by operating on significantly fewer (sparse) nodes. As a consequence, our algorithm uses only 5% of the total multiplications, while keeping on average within 1% of the accuracy of the original model. A unique property of the proposed hashing based back-propagation is that the updates are always sparse. Due to the sparse gradient updates, our algorithm is ideally suited for asynchronous and parallel training leading to near linear speedup with increasing number of cores. We demonstrate the scalability and sustainability (energy efficiency) of our proposed algorithm via rigorous experimental evaluations on several real datasets
    corecore