395 research outputs found

    PointGrow: Autoregressively Learned Point Cloud Generation with Self-Attention

    Full text link
    Generating 3D point clouds is challenging yet highly desired. This work presents a novel autoregressive model, PointGrow, which can generate diverse and realistic point cloud samples from scratch or conditioned on semantic contexts. This model operates recurrently, with each point sampled according to a conditional distribution given its previously-generated points, allowing inter-point correlations to be well-exploited and 3D shape generative processes to be better interpreted. Since point cloud object shapes are typically encoded by long-range dependencies, we augment our model with dedicated self-attention modules to capture such relations. Extensive evaluations show that PointGrow achieves satisfying performance on both unconditional and conditional point cloud generation tasks, with respect to realism and diversity. Several important applications, such as unsupervised feature learning and shape arithmetic operations, are also demonstrated

    Dense 3D Object Reconstruction from a Single Depth View

    Get PDF
    In this paper, we propose a novel approach, 3D-RecGAN++, which reconstructs the complete 3D structure of a given object from a single arbitrary depth view using generative adversarial networks. Unlike existing work which typically requires multiple views of the same object or class labels to recover the full 3D geometry, the proposed 3D-RecGAN++ only takes the voxel grid representation of a depth view of the object as input, and is able to generate the complete 3D occupancy grid with a high resolution of 256^3 by recovering the occluded/missing regions. The key idea is to combine the generative capabilities of autoencoders and the conditional Generative Adversarial Networks (GAN) framework, to infer accurate and fine-grained 3D structures of objects in high-dimensional voxel space. Extensive experiments on large synthetic datasets and real-world Kinect datasets show that the proposed 3D-RecGAN++ significantly outperforms the state of the art in single view 3D object reconstruction, and is able to reconstruct unseen types of objects.Comment: TPAMI 2018. Code and data are available at: https://github.com/Yang7879/3D-RecGAN-extended. This article extends from arXiv:1708.0796

    Unleash the Potential of 3D Point Cloud Modeling with A Calibrated Local Geometry-driven Distance Metric

    Full text link
    Quantifying the dissimilarity between two unstructured 3D point clouds is a challenging task, with existing metrics often relying on measuring the distance between corresponding points that can be either inefficient or ineffective. In this paper, we propose a novel distance metric called Calibrated Local Geometry Distance (CLGD), which computes the difference between the underlying 3D surfaces calibrated and induced by a set of reference points. By associating each reference point with two given point clouds through computing its directional distances to them, the difference in directional distances of an identical reference point characterizes the geometric difference between a typical local region of the two point clouds. Finally, CLGD is obtained by averaging the directional distance differences of all reference points. We evaluate CLGD on various optimization and unsupervised learning-based tasks, including shape reconstruction, rigid registration, scene flow estimation, and feature representation. Extensive experiments show that CLGD achieves significantly higher accuracy under all tasks in a memory and computationally efficient manner, compared with existing metrics. As a generic metric, CLGD has the potential to advance 3D point cloud modeling. The source code is publicly available at https://github.com/rsy6318/CLGD

    UCLID-Net: Single View Reconstruction in Object Space

    Full text link
    Most state-of-the-art deep geometric learning single-view reconstruction approaches rely on encoder-decoder architectures that output either shape parametrizations or implicit representations. However, these representations rarely preserve the Euclidean structure of the 3D space objects exist in. In this paper, we show that building a geometry preserving 3-dimensional latent space helps the network concurrently learn global shape regularities and local reasoning in the object coordinate space and, as a result, boosts performance. We demonstrate both on ShapeNet synthetic images, which are often used for benchmarking purposes, and on real-world images that our approach outperforms state-of-the-art ones. Furthermore, the single-view pipeline naturally extends to multi-view reconstruction, which we also show.Comment: Added supplementary materia

    GECCO: Geometrically-Conditioned Point Diffusion Models

    Full text link
    Diffusion models generating images conditionally on text, such as Dall-E 2 and Stable Diffusion, have recently made a splash far beyond the computer vision community. Here, we tackle the related problem of generating point clouds, both unconditionally, and conditionally with images. For the latter, we introduce a novel geometrically-motivated conditioning scheme based on projecting sparse image features into the point cloud and attaching them to each individual point, at every step in the denoising process. This approach improves geometric consistency and yields greater fidelity than current methods relying on unstructured, global latent codes. Additionally, we show how to apply recent continuous-time diffusion schemes. Our method performs on par or above the state of art on conditional and unconditional experiments on synthetic data, while being faster, lighter, and delivering tractable likelihoods. We show it can also scale to diverse indoors scenes

    PointGrow: Autoregressively Learned Point Cloud Generation with Self-Attention

    Full text link
    A point cloud is an agile 3D representation, efficiently modeling an object's surface geometry. However, these surface-centric properties also pose challenges on designing tools to recognize and synthesize point clouds. This work presents a novel autoregressive model, PointGrow, which generates realistic point cloud samples from scratch or conditioned on given semantic contexts. Our model operates recurrently, with each point sampled according to a conditional distribution given its previously-generated points. Since point cloud object shapes are typically encoded by long-range interpoint dependencies, we augment our model with dedicated self-attention modules to capture these relations. Extensive evaluation demonstrates that PointGrow achieves satisfying performance on both unconditional and conditional point cloud generation tasks, with respect to fidelity, diversity and semantic preservation. Further, conditional PointGrow learns a smooth manifold of given image conditions where 3D shape interpolation and arithmetic calculation can be performed inside

    PU-Flow: a Point Cloud Upsampling Network with Normalizing Flows

    Full text link
    Point cloud upsampling aims to generate dense point clouds from given sparse ones, which is a challenging task due to the irregular and unordered nature of point sets. To address this issue, we present a novel deep learning-based model, called PU-Flow, which incorporates normalizing flows and weight prediction techniques to produce dense points uniformly distributed on the underlying surface. Specifically, we exploit the invertible characteristics of normalizing flows to transform points between Euclidean and latent spaces and formulate the upsampling process as ensemble of neighbouring points in a latent space, where the ensemble weights are adaptively learned from local geometric context. Extensive experiments show that our method is competitive and, in most test cases, it outperforms state-of-the-art methods in terms of reconstruction quality, proximity-to-surface accuracy, and computation efficiency. The source code will be publicly available at https://github.com/unknownue/pu-flow

    Language-driven Scene Synthesis using Multi-conditional Diffusion Model

    Full text link
    Scene synthesis is a challenging problem with several industrial applications. Recently, substantial efforts have been directed to synthesize the scene using human motions, room layouts, or spatial graphs as the input. However, few studies have addressed this problem from multiple modalities, especially combining text prompts. In this paper, we propose a language-driven scene synthesis task, which is a new task that integrates text prompts, human motion, and existing objects for scene synthesis. Unlike other single-condition synthesis tasks, our problem involves multiple conditions and requires a strategy for processing and encoding them into a unified space. To address the challenge, we present a multi-conditional diffusion model, which differs from the implicit unification approach of other diffusion literature by explicitly predicting the guiding points for the original data distribution. We demonstrate that our approach is theoretically supportive. The intensive experiment results illustrate that our method outperforms state-of-the-art benchmarks and enables natural scene editing applications. The source code and dataset can be accessed at https://lang-scene-synth.github.io/.Comment: Accepted to NeurIPS 202
    corecore