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1
Introduction

We humans live in a three-dimensional (3D) world. The ability of 3D scene understand-
ing is essential to interact with our environment. Moreover, we are also able to interpret
the 3D world from a single view. When we look at a picture of a room, we can easily
derive the 3D locations of the room layout components such as ceiling, walls and floor,
as well as the 3D structure of the interior objects (e.g. furniture). We can infer the
spatial relationships between the room configuration and objects even when they are
partially occluded.

This inspires us to explore the research topic ”to understand the 3D world from a
single image”, also known as image-based 3D scene understanding [29, 38] which is
a fundamental concept for many applications, such as robotics, navigation guidance,
virtual/augmented reality and a range of indoor location-based services (e.g. way-
finding and furniture-arrangement). Inspired by the recent success of deep learning, in
this thesis, we focus on developing deep learning frameworks and algorithms for 3D
scene understanding. Hence, we approach 3D scene understanding in a data-driven
manner.

Data representation is key to analyze the 3D world. 3D information may adopt different
representations, as shown in Fig. 1.1. For example, point clouds are collections of 3D
data points which are usually captured by range scanners (e.g. LiDAR) or depth cameras.
Point clouds are used to describe the geometry of, not only, individual objects but also
of complete scenes. A mesh representation is a combination of edges, vertices and faces.
A commonly used mesh type is a triangular mesh that is composed of triangular shaped
faces. A voxel (volumetric element) representation is the 3D counterpart of a pixel in
2D images. It can be considered as a cubic volume representing a unit sample on a
uniformly spaced 3D grid. Depth maps are used to represent the estimated distance of
each point to the viewer.

In this thesis, we focus on point clouds due to two main reasons. First, point clouds
are very close to the raw data directly provided by the sensors. They encode detailed
information obtained by the sensors without any quantization loss (which happens to
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1. Introduction

Figure 1.1: 3D representations. 3D information comes with different representations.

occur for voxels). Second, point clouds are just collections of data points. Therefore,
they are simple 3D representations avoiding combinatorial irregularities and complexi-
ties of, for example, meshes (e.g. choices about number of polygons, polygon sizes and
connectivities).

1.1 Research Outline and Questions

1.1.1 Deep Learning for Point Clouds

A few methods [71, 81, 82, 98, 116] are proposed that process point clouds using deep
neural networks. However, due to the irregular nature of point clouds, these methods
need to convert point clouds to regular formats first before deep learning can be applied.
One example is to convert point clouds to voxel representations, and then apply 3D
CNNs on the volumetric grids [71, 82, 116]. However, storage and computational
costs grow cubically with grid resolution in 3D CNNs. Moreover, as scanners can only
capture points from object surfaces, many voxels are empty, which makes 3D CNNs
computational expensive yielding considerable amount of overhead during training and
inference. Besides voxelizing of point clouds, one could also project point clouds onto
2D planes or render 2D images from them, and subsequently apply 2D CNNs [98].
However, the loss of information is inevitable when applying the 3D-2D projection, and
the selection of the viewpoint for the projection may be ambiguous. The pioneering
work PointNet [81] is proposed to achieve end-to-end feature learning on irregular point
clouds. It takes point clouds as input and outputs either class labels for the entire input
or per point segment/part labels for each point of the input. While PointNet succeeds as
a permutation invariant network, it lacks the ability to capture local context, as points
are either processed independently for each point or processed globally. This brings us

2



1.1. Research Outline and Questions

to our first research question:

How can we capture both the local and global context of point clouds?

To address this question, in Chapter 2, we propose a neural network that directly
consumes point clouds, exploiting both local and global information of the input point
clouds and aggregating features progressively. The network, named 3DContextNet,
utilizes the k-d tree structure to partition 3D point clouds to encapsulate the latent
relations between regions. Then, the network is guided by the corresponding k-d
tree to learn and aggregate features hierarchically and progressively. Experiments on
challenging benchmarks show that the proposed model provides discriminative point
set features.

1.1.2 Object-level 3D Reconstruction from a Single Image

Next, we address the problem of extracting 3D information from 2D images. Specifically,
we focus on object-level 3D reconstruction from a single image. Given an image of an
object, our task is to reconstruct its complete 3D shape including unseen regions. This
is an ill-defined problem, because the depth information is lost during 3D-to-2D image
plane projection, and some parts are invisible due to self-occlusion. Traditional 3D
reconstruction methods are based on multi-view geometry, which include structure from
motion (SfM) and simultaneous localization and mapping (SLAM). Recently, large-
scale repositories of 3D CAD models (e.g. ShapeNet [11]) are introduced enabling
data-driven 3D reconstruction methods. Different methods are proposed to represent
the estimated 3D shape as a voxelized 3D occupancy grid [14, 37, 120]. Choy et al.[14]
propose 3D-R2N2, which takes as input one or more images of an object taken from
different viewpoints. The output is the reconstruction of object in the form of a 3D
occupancy grid by means of recurrent neural networks. Gwak et al.[37] make use of
foreground masks for 3D reconstruction by constraining the reconstruction to be in the
space of unlabeled real 3D shapes. As discussed above, data sparsity and computational
complexity are the restrictive factors of voxel-based methods. Fan et al.[28] introduce
a framework and loss functions designed to generate unordered point clouds directly
from 2D images. Jiang et al.[52] extend this pipeline by adding geometrically driven
loss functions for training. However, the inference procedure does not explicitly impose
geometrical constraints. Therefore, the performance relies on the quality of training data
and the effectiveness of learning to generalize. To this end, we address the following
research question:

How can we sufficiently infer point clouds from a single image?

In Chapter 3, we propose a pipeline to generate a 3D point cloud of an object from
a single-view RGB image by depth intermediation. Most of the previous methods

3



1. Introduction

predict the 3D point coordinates from single RGB images directly. We decompose this
problem into depth estimation from a single image and point cloud completion from
a partial point cloud. Our method sequentially predicts the depth maps from images
and then infers the complete 3D object point clouds based on the predicted partial point
clouds. We explicitly impose the camera model geometrical constraint in our pipeline
and enforce the alignment of the generated point clouds and estimated depth maps.

While the first half of the thesis studies deep learning architectures for point clouds
(Chapter 2) and their applications to point cloud generation (Chapter 3), the second
half of the thesis focuses on more sophisticated 3D scene understanding tasks. In
particular, we examine two problems: 3D room layout estimation (to estimate the 3D
room structure of an indoor scene) and 3D indoor scene reconstruction (to reconstruct
the 3D semantic scene point cloud of an indoor scene). A shared theme is that our
analysis on point clouds learning augments object-centric approaches to scene-level
understanding.

1.1.3 Joint Learning of 3D Indoor Layout and Depth

To reconstruct an indoor scene from a single image, the 3D room layout estimation is
an essential step before addressing the actual recognition and reconstruction process.
Single-view room layout estimation is an active topic of research for the past decades.
The goal is to create a 3D layout model under the “Manhattan world” assumption [17].
A special case is the cuboid model where a room is composed of four walls, a ceiling,
and a floor. Delage et al.[21] propose a dynamic Bayesian network model to recover
3D models of indoor scenes. Lee et al.[61] produce Orientation Maps, generate layout
hypotheses based on detected line segments, and select a best-fitting layout from them.
Hedau et al.[42] model the room by a parametric 3D box by iteratively localizing clutter
and refitting the box. Subsequent methods follow a similar approach, with improvements
on layout generation [85, 93, 93], features for scoring layouts [85, 93], incorporation
of object hypotheses [20, 36, 44, 136] or using other types of context. The most recent
methods train deep network features to classify pixels into layout surfaces like walls and
ceilings [19, 50], boundaries [68], corners [60], or a combination of them [88]. Nearly
all of these methods aim to produce cuboid-shaped layouts from perspective RGB
images. A few methods operates on panoramic images [101, 119, 121, 122, 134, 138].
LayoutNet [138] predicts the layout boundary and corner maps directly from the input
panorama. DuLa-Net [122] leverages both the equirectangular panorama-view and
the perspective ceiling-view to learn different cues of the room layout. HorizonNet
[101] encodes the room layout as three 1D vectors and proposes to recover the 3D
room layout from 1D predictions by a RNN. However, all existing methods ignore the
complementary characteristics of layout and depth information. For instance, depth
information of the scene may help to cope with scene clutter. Likewise, having an
accurate layout prediction of the scene may help to reduce the noise in depth estimation
and supports the conversion of depth data to the proper scale. Therefore, in Chapter 4,
we consider the following research question:

4



1.1. Research Outline and Questions

How can 3D room layout estimation make use of depth prediction?

We propose a method which jointly learns layout prediction and depth estimation from a
single indoor panorama image. Previous methods consider layout prediction and depth
estimation from a single panorama image separately. However, these two tasks are
tightly intertwined. Leveraging the layout depth map as an intermediate representation,
our proposed method outperforms existing methods for both panorama layout prediction
and depth estimation.

1.1.4 3D Reconstruction from a Single Indoor Panorama

Semantic reconstruction of indoor scenes refers to both scene understanding and object
reconstruction. Existing methods either address one part of this problem or focus on
independent objects. Most of the previous works on semantic scene reconstruction
are dealing with perspective images. Tulsiani et al.[108] propose a voxel-based rep-
resentation to recover the 3D structure of the scene, but the resolution is limited and
the computational cost for scene-level voxel reconstruction yields considerable amount
of overhead during training and inference. Izadinia et al.[50] reconstruct a scene by
retrieving similar meshes from a large database of furniture CAD models. However,
the method requires many iterations of model rendering and the accuracy is highly
dependent on the similarity of the CAD models in the database. Gkioxari et al.[32]
propose a Mesh R-CNN to predict object meshes for multiple objects in an image, but it
ignores the scene information and suffers from artifacts of mesh generation on cubified
voxels. Recently, [77] proposes a method to jointly reconstruct the room layout, object
bounding boxes and meshes from a single perspective image. However, the method
requires dense and clean meshes for proper object mesh reconstruction, which is tedious
and labor-consuming for real scenes. Furthermore, previous methods can only partially
reconstruct indoor scenes as the perspective images have limiting effects on the field of
view. This leads us to the fourth research question:

How can we reconstruct the 3D semantic scene point cloud from a single panorama
image?

In Chapter 5, we propose a novel pipeline Pano2Scene that reconstructs 3D semantic
scene point cloud from a single panorama input image. 3D indoor semantic scene
reconstruction from 2D images is challenging as it requires both scene understanding
and object reconstruction. Compared to perspective images, panoramas provide larger
field of view and carry more scene information. In this chapter, to reconstruct the 3D
indoor semantic scene from a single panorama image, we propose a pipeline that jointly
learns to predict the 3D scene layout, complete the object shapes and reconstruct the
full scene point cloud.

5



1. Introduction

1.2 Thesis Overview

This main theme of this thesis is 3D scene understanding from a single image. We
start with utilizing k-d trees to partition point clouds to capture both local and global
structure, and continue with inferring complete point clouds from a single image
via depth intermediation. Then, we propose a pipeline to jointly estimate the depth
and 3D layout of an indoor scene from a single panorama image. We conclude with
reconstructing the 3D indoor semantic scene point clouds from a single panorama image.
Findings of this thesis may lead to a better understanding of 3D reconstruction from
single images.

6
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1.3 Origins

In this section, we list the publications each chapter is based on and outline the role of
each author.

Chapter 2

Chapter 2 is based on W. Zeng and T. Gevers. ”3DContextNet: K-d Tree Guided
Hierarchical Learning of Point Clouds Using Local and Global Contextual Cues”.
Proceedings of the European Conference on Computer Vision (ECCV) Workshops,
2018.

W. Zeng initiated the idea and developed the algorithms and experiments. T. Gevers
helped with reformulating the idea and rewriting the paper.

Chapter 3

Chapter 3 is based on W. Zeng, S. Karaoglu and T. Gevers. ”Inferring Point Clouds
from Single Monocular Images by Depth Intermediation”. Under review for publication
in Computer Vision and Image Understanding, 2020.

W. Zeng was responsible for the development of the algorithms and experiments. S.
Karaoglu helped with the algorithmic design and experiment analysis. T. Gevers
contributed to reformulating the idea and algorithmic design. All authors contributed to
the writing.

Chapter 4

Chapter 4 is based on W. Zeng, S. Karaoglu and T. Gevers. ”Joint 3D Layout and
Depth Prediction from a Single Indoor Panorama Image”. Proceedings of the European
Conference on Computer Vision (ECCV), 2020.

W. Zeng was responsible for the development of the algorithms and experiments, with
contributions from the co-authors. S. Karaoglu and T. Gevers helped with reorganizing
the story-line and contributed to the design of the experimental setup. All authors
contributed to the writing.

Chapter 5

chapter 5 is based on W. Zeng, S. Karaoglu and T. Gevers. ”Pano2Scene: 3D Indoor
Semantic Scene Reconstruction from a Single Panorama Image”. Proceedings of the
British Machine Vision Conference (BMVC), 2020.

W. Zeng was responsible for the algorithms and performed the experiments, with
contributions from the co-authors. S. Karaoglu and T. Gevers helped with reformulating
the idea and algorithmic design. All authors contributed to the writing.
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2
3DContextNet: K-d Tree Guided

Hierarchical Learning of Point Clouds

2.1 Introduction

Over the past few years, Convolutional Neural Networks (CNNs) have achieved ex-
cellent performance in different computer vision tasks such as image classification
[55, 59, 91], object detection [30, 31, 87] and semantic segmentation [5, 31, 67, 78].
3D imaging technologies have also experienced major progress. In parallel, a number of
annotated large-scale 3D datasets have become publicly available, which is crucial for
supervised 3D deep learning models. For example, ModelNet [117] and ShapeNet [12]
provide object-level man-made 3D models, whereas Stanford Large-Scale 3D Indoor
Spaces Dataset (S3DIS) [4] and ScanNet [18] are available as real 3D scene datasets.

Most of the traditional work convert the irregular 3D data (point clouds) to regular
formats like 2D projection images [83, 95, 99] or 3D voxel grids [72, 83, 117] as a
pre-processing step. Methods that employ 2D image projections of 3D models as their
input, such as [95, 99], are well suited as inputs to 2D CNN architectures. However, the
intrinsic 3D geometrical information is distorted by the 3D-to-2D projection. Hence,
this type of method is limited by the exploitation of 3D spatial connections between
regions. While it might seem straightforward to extend 2D CNNs to process 3D data by
utilizing 3D convolutional kernels, data sparsity and computational complexity are the
restrictive factors of this type of approaches [7, 72, 94, 117].

To fully exploit the 3D nature of point clouds, in this chapter, the goal is to use the
k-d tree structure [6] as the 3D data representation model, see Figure 2.1. Our method
consists of two parts: feature learning and aggregation. The model exploits both local
and global contextual information and aggregates point features to obtain discriminative
3D signatures in a hierarchical manner. In the feature learning stage, local patterns are
identified by the use of an adaptive feature recalibration procedure, and global patterns
are calculated as non-local responses of different regions at the same level. Then, in the

9



2. 3DContextNet: K-d Tree Guided Hierarchical Learning of Point Clouds

Figure 2.1: Example of the implicit 3D space partition of a k-d tree. Colors of different
local parts indicate different corresponding nodes in the k-d tree structure.

feature aggregation stage, point features are merged hierarchically corresponding to the
associated k-d tree structure in bottom-up fashion.

Our main contributions are as follows:

• A novel 3D context-aware neural network is proposed for 3D point cloud feature
learning by exploiting the implicit space partition of the k-d tree structure.

• A novel method is presented to incorporate both local and global contextual
information for point cloud feature learning.

• For semantic segmentation, our method significantly outperforms the state-of-the-
art on the challenging Stanford Large-Scale 3D Indoor Spaces Dataset(S3DIS)
[4].

2.2 Related Work

Previous work on ConvNets and volumetric models use different rasterization strate-
gies. Wu et al.propose 3DShapeNets [117] using 3D binary voxel grids as input of a
Convolutional Deep Belief Network. This is the first work to use deep ConvNets for
3D data processing. VoxNet [72] proposes a 3D ConvNet architecture to integrate the
3D volumetric occupancy grid. ORION [94] exploits the 3D orientation to improve the
results of voxel nets for 3D object recognition. Based on the ResNet [41] architecture,
Voxception-ResNet (VRN) [7] proposes a very deep architecture. OctNet [90] exploits

10



2.2. Related Work

Figure 2.2: Comparison to related work for the classification task. Our model is based
on hierarchical feature learning and aggregation using the k-d tree structure.

the sparsity in the input data by using a set of unbalanced octrees where each leaf node
stores a pooled feature representation. However, most of the volumetric models are
limited by their resolution, data sparsity, and computational cost of 3D convolutions.

Other methods rely on 2D projection images to represent the original 3D data and then
apply 2D ConvNets to classify them. MVCNN [99] uses 2D rendered images of 3D
shapes to learn representations of multiple views of a 3D model and then combines them
to compute a compact descriptor. DeepPano [95] converts each 3D shape to a panoramic
view and uses 2D ConvNets to build classifiers directly from these panoramas. With
well-designed ConvNets, this type of methods (2D projections from 3D) performs
successfully in different shape classification and retrieval tasks. However, due to the
3D-to-2D projection, these methods are limited in exploring the full 3D nature of
the data. In addition, [8, 70] exploits ConvNets to process non-Euclidean geometries.
Moreover, Geodesic Convolutional Neural Networks (GCNN) [70] apply linear and
non-linear transformations to polar coordinates in a local geodesic system. However,
these methods are limited to manifold meshes.

Only recently, a number of methods are proposed that apply deep learning directly
to the raw 3D data (point clouds). PointNet [80] is the pioneering work that directly
processes 3D point sets in a deep learning setting. Nonetheless, since every point is
treated equally, this approach fails in retaining the full 3D information. The modified
version of PointNet, PointNet++ [84], abstracts local patterns by sampling representative
points and recursively applies PointNet [80] as a learning component to obtain the final
representation. However, it directly discards the unselected points after each layer, and
needs to sample points recursively at different scales which may yield relatively slow
inference speed. Another recent work, Kd-Network [54] uses a 3D indexing structure
to perform the computation. The method employs parameter sharing and calculates

11



2. 3DContextNet: K-d Tree Guided Hierarchical Learning of Point Clouds

representations from the leaf nodes to the roots. However, this method needs to sample
the point clouds and to construct k-d trees for every iteration. Further, the method
employs multiple k-d trees to represent a single object. It is split-direction-dependent
and is negatively influenced by a change in rotation (3D object classification) and
viewpoint (3D scene semantic segmentation).

In contrast to previous methods, our model is based on a hierarchical feature learning
and aggregation pipeline. Our neural network structure exploits the local and global
contextual cues which are inferred by the implicit space partition of the k-d tree. In this
way, our model learn features, and calculates the representation vectors progressively
using the associated k-d tree. Figure 2.2 shows a comparison of related methods to our
work for the classification task.

2.3 Method

In this section, we describe our architecture, 3DContextNet, see Figure 2.3. First, the
choice of the tree structure is motivated to subdivide the 3D space. Then, the feature
learning stage is discussed which uses both local and global contextual cues to encode
the point features. Finally, the feature aggregation stage is described which computes
representation vectors progressively along the k-d trees.

2.3.1 K-d Tree Structure: Implicit 3D Space Partition

Our method is designed to capture both the local and global context by learning and
aggregating point features progressively and hierarchically. Therefore, a representation
model is required to partition 3D point clouds to encapsulate the latent relations between
regions. To this end, the k-d tree structure [6] is chosen.

A k-d tree is a space partitioning structure which is constructed by recursively computing
axis-aligned hyperplanes to divide point sets. In this chapter, we choose the standard
k-d tree construction to obtain balanced k-d trees from the 3D input point clouds/sets.
The latent region subdivisions of the constructed k-d tree are used to capture the local
and global contextual information of point sets. Each node, at a certain level, represents
a local region at the same scale, whereas nodes at different levels represent subdivisions
at corresponding scales. In contrast to the k-d network of [54], splitting directions and
positions are not used for the tree construction. In this way, our method is more robust to
jittering and rotation than [54] which trains different affine transformations depending
on the splitting directions of the nodes.

The k-d tree structure can be used to search for k-nearest neighbors for each point
to determine the local point adjacency and neighbor connectivity. Our approach uses
the implicit local partitioning obtained by the k-d tree structure to determine the point
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Figure 2.3: 3DContextNet architecture. 3D object point clouds are used to illustrate
that our method is suitable for both 3D classification and segmentation tasks. The
corresponding nodes of the k-d tree determine the receptive fields at different levels. For
feature learning, both local and global contextual information is encoded for each level.
The associated k-d tree forms the computational graph to compute the representation
vectors progressively for feature aggregation.

adjacency and neighbor connectivity.

In general, conventional ConvNets learn and merge nearby features at the same time
enlarging the receptive fields of the network. Because of the non-overlapping parti-
tioning of the k-d tree structure, in our method, learning and merging at the same time
would decrease the size of the remaining points too fast. This may lead to a lack of
fine geometrical cues which are factored out during the early merging stages. To this
end, our approach divides the network architecture into two parts: feature learning and
aggregation.

2.3.2 Feature Learning Stage

Given as input is a 3D point set with the corresponding k-d tree. The tree leaves
contain the individual (raw) 3D points with their representation vectors, denoted by
X = {x1, . . . , xn} ⊆ RF . For example, F = 3 denotes the initial vectors containing
the 3D point coordinates. Features are directly learned from the raw point clouds
without any pre-processing step. According to [129], a function S(X) is permutation
invariant to the elements in X , if and only if it can be decomposed in the form of
ρ(
∑
x∈X ϕ(x)), for a suitable transformation of ρ and ϕ. We follow PointNet [80],

where a point set is mapped to a discriminative vector as follows:

f({x1, . . . , xn}) ≈ g(h(x1), . . . , h(xn)), (2.1)
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2. 3DContextNet: K-d Tree Guided Hierarchical Learning of Point Clouds

where f : 2R
N → R, h : RN → RK and g : RK × . . .× RK︸ ︷︷ ︸

n

→ R is a symmetric

function.

In the feature learning stage, point features are computed at different levels hierarchi-
cally. For a certain level, we first process each point using shared multi-layer perceptron
networks (MLP) as function h in equation (2.1). Then, different local region repre-
sentations are computed by a symmetric function, max pooling in our work, for the
subdivision regions at the same level, as function g in equation (2.1). Then, local and
global contextual cues are calculated in parallel based on the local region representations.
Note that both the local and global features are concatenated with the corresponding
points to retain the number of points.

Local Contextual Cues: Adaptive Feature Recalibration

To model the inter-dependencies between point features in the same region, we use the
local region representations obtained from the symmetric function to perform adaptive
feature recalibration [46]. All operations are adaptive to each local region, represented
by a certain node in the k-d tree. The local region representation obtained by the
symmetric function can be interpreted as a feature descriptor for the corresponding local
region. A gating function is used with a sigmoid activation to capture the feature-wise
dependencies. Point features in this local region are then rescaled by the activations to
obtain the adaptive recalibrated output:

ỹi = σ(g(Y )) · yi, i = 1, ...,m (2.2)

where σ denotes the sigmoid activation and g is the symmetric function to obtain the
local region representation. Y = {y1, . . . , ym} is the point feature set of the local
region and m is the number of points in that region. In this way, feature dependencies
are consolidated for each local region by enhancing informative features. As a result, we
can obtaion more discriminative local patterns. Note that the activations act as feature
weights and adaptively recalibrate point features for different local regions.

Global Contextual Cues: Non-local Responses

Global contextual cues are based on the non-local responses to capture a greater range of
dependencies. Intuitively, a non-local operation computes the response for one position
as a weighted sum over the features for all positions in the input feature maps. A generic
non-local operation [113] in deep neural networks is calculated by:

zi =
1

C(x)

∑
∀j

G(xi, xj)H(xj), (2.3)

where i is the index of the output position and j is the index that enumerates all possible
positions. In our case, i represents a local region at a certain level and j enumerates the
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number of local regions at the same level. Function G denotes the relationships between
i and j. Further, function H computes a representation of the input signal at position j.
Then, the response is normalized by a factor C(x).

The k-d tree divides the input point set into different local regions. These are represented
by different nodes of the tree. Larger range dependencies for different local regions at
the same level are computed as non-local responses of the corresponding nodes of the
tree. We consider H as an MLP, and the pairwise function G as an embedded Gaussian
function:

G(xi, xj) = eθ(xi)
Tφ(xj), (2.4)

where θ(xi) and φ(xj) are two MLPs representing two embeddings. In this chapter, the
relationships between different nodes at the same level should be undirected, and hence
G(xi, xj) = G(xj , xi). Therefore, the two embeddings are the same i.e. θ = φ. The
normalization factor is calculated by C(x) =

∑
∀j G(xi, xj). Note that this operation

is different from a fully-connected layer. The non-local responses are based on the
connections between different local regions, whereas fully-connected layers use learned
weights.

Due to our input format and architecture, the receptive fields of the convolutional kernels
are always 1× 1 in the feature learning stage. Following DenseNet [47], to strengthen
the information flow between layers, layers at the same level are connected (in the
feature learning stage) with each other by concatenating all corresponding point features
together. Such connections also lead to an implicit deep supervision which makes the
network easier to train. The output of the feature learning stage has the same number of
points as the input point set.

2.3.3 Feature Aggregation Stage

In the feature aggregation stage, the associated k-d tree structure is used to form the
computational graph to progressively abstract over larger regions. For the classification
task, the global signature is computed for the entire 3D model. For the semantic seg-
mentation task, the outputs are the point labels. Instead of aggregating the information
once over all points, the more discriminative features are computed in a bottom-up
manner. The representation vector of a non-leaf node at a certain level is computed
from its children nodes by MLPs and the symmetric function. To that end, max pooling
is used as the symmetric function.

For classification, by using this bottom-up and hierarchical approach, more discrimina-
tive global signatures are obtained. This procedure corresponds to a ConvNet in which
the representation of a certain location is computed from the representations of nearby
locations at the previous layers by a series of convolutions and pooling operations.
Our architecture is able to progressively capture features at increasingly larger scales.
Features at lower levels have smaller receptive fields, whereas features at higher levels
have larger receptive fields. That is due to the data-dependent partition of the k-d

15
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tree structure. Additionally, our model is invariant to the input order of the point sets,
because the aggregating direction is along the k-d tree structure, which is invariant to
input permutations.

For the semantic segmentation task, the k-d tree structure is used to represent an encoder-
decoder architecture with skip connections to link the related layers. The input of the
feature aggregation stage is the point feature set in which the representation of each
point encapsulates both local and global contextual information at different scales. The
output is a semantic label for each point.

In conclusion, our architecture fully utilizes the local and global contextual cues in
the feature learning stage. It calculates the representation vectors hierarchically in
the feature aggregation stage. Hence, with k-d tree guided hierarchical learning, our
3DContextNet can obtain discriminative features for point clouds.

2.3.4 Discussion

Our method is related to PointNet [80] which encodes the coordinates of each point
to higher dimensional features. However, by its design, this method is not able to
sufficiently capture the local patterns in 3D space. More recently, PointNet++ [84] is
proposed which abstracts local patterns by selecting representative points in a metric
space and recursively applies PointNet as a local feature learner to obtain features of the
whole point set. In fact, the method handles the non-uniform point sampling problem.
However, the set of abstraction layers need to sample the point sets multiple times at
different scales which leads to a relative slow inference speed. Further, only the selected
points are preserved. Others are directly discarded after each layer which causes the
loss of fine geometric details. Another recent work, K-d network [54] performs linear
and non-linear transformations and share the transformation parameters corresponding
to the splitting directions of each node in the k-d tree. The input of this method is
the constructed k-d trees. It needs to calculate the representation vectors for all the
nodes of the associated tree structure. For each node at a certain level, the input is the
representation vectors of the two previous nodes. The method heavily depends on the
splitting direction of each node to train different multiplicative transformations at each
level. Hence, the method is not invariant to rotation. Furthermore, point cloud sampling
and k-d tree fitting during every iteration lead to slow training and inference speed.

2.3.5 Implementation Details

Our 3DContextNet model deals with point clouds of a fixed size N = 2D where D
is the depth of the corresponding balanced k-d tree. Point clouds of different sizes
can be converted to the same size using sub- or oversampling. In our experiments,
not all the levels of the k-d tree are used. For simplicity and efficiency reasons, this
number is L = 3 for both the feature learning and aggregation stage. The receptive
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Table 2.1: 3D semantic segmentation results on the Stanford Large-Scale 3D Indoor
Spaces Dataset (S3DIS). Our method outperforms previous state-of-the-art methods by
a large margin.

mean IoU overall accuracy avg. class accuracy
Baseline [80] 20.1 53.2 -
PointNet [80] 47.6 78.5 66.2
MS + CU(2) [27] 47.8 79.2 59.7
G + RCU [27] 49.7 81.1 66.4
PointNet++ [84] 53.2 83.0 70.5
Ours 55.6 84.9 74.5

fields (number of points) for each level in the feature learning stage are 32 - 64 - 128 for
the classification tasks and 32 - 128 - 512 for the segmentation tasks.

In the feature learning stage, the sizes of the shared MLPs are (64, 64, 128, 128) - (64,
64, 256, 256) - (64, 64, 512, 512) for the three levels, respectively. The size of MLPs
for θ and H are 64 - 128 - 256 and 128 - 256 - 512, respectively. Dense connections
are applied within each level before the max-pooling layer. In the feature aggregation
stage, the MLPs and pooling operations are used recursively to progressively abstract
the discriminative representations. For the classification task, the sizes of the MLPs are
(1024) - (512) - (256), respectively. For the segmentation task, like the hourglass shape,
the sizes of the MLPs are (1024) - (512) - (256) - (256) - (512) - (1024), respectively.
The output is then processed by two fully-connected layers with size 256. Dropout is
applied after each fully-connected layer with a ratio of 0.5.

2.4 Experiments

In this section, we evaluate our 3DContextNet on different 3D point cloud datasets.
First, it is shown that our model significantly outperforms state-of-the-art methods
for the task of semantic segmentation on the Stanford Large-Scale 3D Indoor Spaces
Dataset [4]. Then, it is shown that our model provides competitive results for the task
of 3D object classification on the ModelNet40 dataset [117] and the task of 3D object
part segmentation on the ShapeNet part dataset [12].

2.4.1 3D Semantic Segmentation of Scenes

Our network is evaluated on the Stanford Large-Scale 3D Indoor Spaces (S3DIS) dataset
[2, 4] for 3D semantic segmentation task. The dataset contains 6 large scale indoor
areas and each point is labeled with one of the 13 semantic categories, including 5 types
of furniture (board, bookcase, chair, sofa and table) and 7 building elements (ceiling,
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2. 3DContextNet: K-d Tree Guided Hierarchical Learning of Point Clouds

Table 2.2: IoU per semantic class for the S3DIS dataset with XY Z −RGB as input. It
can be derived that our method obtains the state-of-the-art results in mean IoU and for
most of the individual classes.

PointNet [80] MS + CU(2) [27] G + RCU [27] PointNet++ [84] Ours
Ceiling 88.0 88.6 90.3 90.2 92.6
Floor 88.7 95.8 92.1 91.7 93.1
Wall 69.3 67.3 67.9 73.1 73.9
Beam 42.4 36.9 44.7 42.7 52.9

Column 23.1 24.9 24.2 21.2 35.0
Window 47.5 48.6 52.3 49.7 55.8

Door 51.6 52.3 51.2 42.3 57.5
Table 54.1 51.9 58.1 62.7 62.9
Chair 42.0 45.1 47.4 59.0 49.0
Sofa 9.6 10.6 6.9 19.6 22.0

Bookcase 38.2 36.8 39.0 45.8 42.8
Board 29.4 24.7 30.0 48.2 39.8
Clutter 35.2 37.5 41.9 45.6 45.8

Mean IOU 47.6 47.8 49.7 53.2 55.6

beam, door, wall, window, column and floor) plus clutter. We follow the same setting
as in [80] and use a 6-fold cross validation over all the areas.

Our method is compared with the baseline by PointNet [80] and the recently introduced
MS+CU and G+RCU models [27]. We also produce the results of PointNet++ [84]
for this dataset. During training, we use the same pre-processing as in [80]. We first
split rooms into blocks of 1m × 1m and represent each point by a 9-dimensional
vector containing coordinates (x, y, z), the color information RGB and the normalized
position (x′, y′, z′). The baseline extracts the same 9-dim local features and three
additional ones: local point density, local curvature and normals. The standard MLP
is used as the classifier. PointNet [80] computes the global point cloud signature and
feeds it back to per point features. In this way, each point representation incorporates
both local and global information. Recent work by [27] proposes two models that
enlarge the receptive field over the 3D scene. The motivation is to incorporate both the
input-level context and the output-level context. MS+CU represents the multi-scale
input block with a consolidation unit model, while G+RCU stands for the grid-blocks
in combination with a recurrent consolidation block model. PointNet++ [84] exploits
metric space distances to build a hierarchical grouping of points and abstracts the
features progressively. Results are shown in Table 2.1. A significance test is conducted
between our results and the state-of-the-art results obtained by PointNet++ [84]. The
p-value equals to 0.0122 in favor of our method.

We also compare the mean IoU for each semantic class with XY Z −RGB and only
with XY Z as input, see Table 2.2 and Table 2.3 respectively. We obtain state-of-the-art
results in mean IoU and for most of the individual classes for both XY Z − RGB
and XY Z input. The reason of obtaining comparable results with PointNet++ [84]
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Table 2.3: IoU per semantic class for the S3DIS dataset using only XY Z input features
(no color/appearance). It is shown that our method provides comparable results in mean
IoU and for all individual classes even without color/appearance information

PointNet [80] MS + CU(2) [27] PointNet++ [84] Ours
Ceiling 84.0 86.5 88.0 90.5
Floor 87.2 94.9 92.4 92.8
Wall 57.9 58.8 64.7 63.6
Beam 37.0 37.7 37.7 49.4

Column 19.6 25.6 16.8 31.2
Window 29.3 28.8 31.0 44.2

Door 35.3 36.7 41.1 37.8
Table 51.6 47.2 59.6 59.6
Chair 42.4 46.1 52.0 50.6
Sofa 11.6 18.7 29.4 17.1

Bookcase 26.4 30.0 42.2 38.7
Board 12.5 16.8 19.2 17.3
Clutter 25.5 31.2 36.9 37.9

Mean IOU 40.0 43.0 47.0 48.6

for furnitures is that the k-d tree structure is computed along the axes. Therefore, it
may be inefficient for precise prediction near the splitting boundaries, especially for
relatively small objects. Note that our model using only geometry information (i.e.
XY Z) achieves better results than the original PointNet method using both geometry
and color/appearance information.

A number of qualitative results are presented in Figure 2.4 for the 3D indoor semantic
segmentation task. It can be derived that our method provides more precise predictions
for local structures. It shows that our model exploits both local and global contextual
cues to learn discriminative features to achieve proper semantic segmentation. Moreover,
our model size is less than 160 MB and average inference time is less than 70 ms per
block, which makes our method suitable for large scale point cloud analysis.

Ablation Study

In this section, experiments are conducted to validate the effects of the different compo-
nents of our proposed architecture for 3D semantic segmentation task. The baseline is
the model corresponding to the vanilla PointNet, but utilizing the k-d tree partitioning
to guide the feature learning stage. For a certain level, max-pooling is used to obtain
different local region representations which are concatenated with the corresponding
point features. We also trained models with different sets of components to test the
effectiveness of our approach. We use the sixth fold setting of [24] for S3DIS as our
experiment setting (i.e. we test on Area 6 and train on the rest). Results are reported
in Table 2.4. Experimental results show that: (1) with k-d tree guided hierarchical
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XYZ-RGB Input PointNet Ours Ground Truth

Ceiling Floor Wall Beam Column Window Door Table Chair Sofa Bookcase Board Clutter

Figure 2.4: Qualitative results for 3D indoor semantic segmentation. Results for the
S3DIS dataset with XY Z −RGB as input. From left to right: the input point cloud,
the results of PointNet, our results, and the ground truth semantic labels. Our model
obtains more consistent and less noisy predictions.

feature learning, the baseline obtains better results than PointNet. Hence, local struc-
tures do help, (2) local contextual cues boost the performance the most, indicating that
local neighborhoods of points contain fine-grained structure information, (3) any single
combination of two components increases the performance and combining all of them
provides state-of-the-art 3D semantic segmentation results.

2.4.2 3D Object Classification and Part Segmentation

We evaluate our method on the ModelNet40 shape classification benchmark [117].
The dataset contains a collection of 3D CAD models of 40 categories. We use the
official split consisting of 9843 examples for training and 2468 for testing. Using
the same experimental settings of [80], we convert the CAD models to point sets by
uniformly sampling (1024 points in our case) over the mesh faces. Then, these points
are normalized to have zero mean and unit sphere. We also randomly rotate the point
sets along the z-axis and jitter the coordinates of each point by Gaussian noise for data
augmentation during training.
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Table 2.4: Effectiveness of different components of our architecture. We use the sixth
fold setting of [24] for S3DIS as our training/testing split.

mean IoU overall accuracy
PointNet 63.9 86.0
PointNet++ 69.1 90.1
Baseline with k-d tree guided 68.1 89.2
Only Progressively Aggregation 68.3 88.9
Only Global Cues 68.7 88.9
Only Local Cues 69.9 89.8
Global Cues and Progressively Aggregation 69.8 89.9
Local Cues and Progressively Aggregation 71.2 90.4
Local and Global Cues 71.5 90.1
All 72.0 90.6

It can be derived from Table 2.5, that our model outperforms PointNet [80]. Our
model has competitive performance compared to PointNet++. However, our method is
much faster in inference time. Table 2.6 summarizes the comparison of time and space
computations between PointNet, PointNet++ and our proposed method. We measure
forward pass time with a batch size of 8 using TensorFlow 1.1. PointNet has the best
time efficiency, but our model is faster than PointNet++ while keeping a comparable
classification performance.

We also evaluate our method on the ShapeNet part dataset [12]. The dataset contains
16881 CAD models of 16 categories. Each category is annotated with 2 to 6 parts. There
are 50 different parts annotated in total. We use the official split for training and testing.
In this dataset, both the number of shapes and the parts within categories are highly
imbalanced. Therefore, many previous methods train their network on every category
separately. Our network is trained across categories.

We compare our model with two traditional learning based techniques Wu [115] and
Yi [125], the volumetric deep learning baseline (3DCNN) in PointNet [80], as well as
state-of-the-art approaches of SSCNN [126] and PointNet++ [84], see Table 2.7. The
point intersection over union for each category as well as the mean IoU are reported. In
comparison to PointNet, our approach performs better on most of the categories, which
proves the importance of local and global contextual information. See Figure 2.5 for a
number of qualitative results for the 3D object part segmentation task.

2.5 Conclusion

In this chapter, we proposed a deep learning architecture that exploits the local and
global contextual cues imposed by the implicit space partition of the k-d tree for feature
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Table 2.5: 3D object classification results on ModelNet40. The result of our model
outperforms PointNet and is comparable to PointNet++.

Method Input Accuracy (%)
DeepPano [95] image 77.6
MVCNN [99] image 90.1
MVCNN-MultiRes [83] image 91.4
3DShapeNets [117] voxel 77
VoxNet [72] voxel 83
Subvolume [83] voxel 89.2
PointNet (vanilla) [80] point cloud 87.2
PointNet [80] point cloud 89.2
K-d network [54] point cloud 90.6
PointNet++ [84] point cloud 90.7
PointNet++ (with normal) [84] point cloud 91.9
Ours point cloud 90.2
Ours (with normal) point cloud 91.1

Table 2.6: Comparison of the model sizes and the inference time for the classification
task. Our model is faster than PointNet++ while keeping comparable classification
performance

Model size (MB) Forward time (ms)
PointNet [80] 40 25.3

PointNet++(SSG) [84] 8.7 82.4
PointNet++(MSG) [84] 12 163.2
PointNet++(MRG) [84] 24 87.0

Ours 56.8 45.9

Table 2.7: 3D object part segmentation results on ShapeNet part dataset.

Wu [115] K-d Networks [54] 3DCNN [80] Yi [125] PointNet [80] SSCNN [126] PointNet++ [84] Ours
Airplane 63.2 79.9 75.1 81.0 83.4 81.6 82.4 83.3

Bag - 71.2 72.8 78.4 78.7 81.7 79.0 78.0
Cap - 80.9 73.3 77.7 82.5 81.9 87.7 84.2
Car - 68.8 70.0 75.7 74.9 75.2 77.3 77.2

Chair 73.5 88.0 87.2 87.6 89.6 90.2 90.8 90.1
Earphone - 72.4 63.5 61.9 73.0 74.9 71.8 73.1

Guitar - 88.9 88.4 92.0 91.5 93.0 91.0 91.6
Knife - 86.4 79.6 85.4 85.9 86.1 85.9 85.9
Lamp 74.4 79.8 74.4 82.5 80.8 84.7 83.7 81.4
Motor - 55.8 58.7 70.6 65.2 66.7 71.6 69.1
Mug - 86.5 91.8 91.9 93.0 92.7 94.1 92.3
Pistol - 79.3 76.4 85.9 81.2 81.6 81.3 81.7

Rocket - 50.4 51.2 53.1 57.9 60.6 58.7 60.8
Skateboard - 71.1 65.3 69.8 72.8 82.9 76.4 71.8

Table 74.8 80.2 77.1 75.3 80.6 82.1 82.6 81.4
Mean - 77.2 79.4 81.4 83.7 84.7 85.1 84.3
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learning, and calculate the representation vectors progressively along the associated
k-d tree for feature aggregation. Large scale experiments showed that our model
outperformed existing state-of-the-art methods for semantic segmentation task. Fur-
ther, the model obtained comparable results for 3D object classification and 3D part
segmentation.

In the future, other hierarchical 3D space partition structures can be studied as the
underlying structure for the deep net computation and the non-uniform point sampling
issue needs to be taken into consideration.
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Figure 2.5: Qualitative results for the 3D object part segmentation task. For each group
from left to right: the prediction and the ground truth.
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3
Inferring Point Clouds from a Single

Monocular Image by Depth
Intermediation

3.1 Introduction

Inferring 3D shapes from 2D images is an important computer vision task which
has many applications such as robot-environment interaction, 3D-based classification
and recognition, virtual and augmented reality. Recently, due to the development
of deep learning techniques and the creation of large-scale datasets [11], increasing
attention has been focused on deep 3D shape generation from single RGB images
[14, 34, 39, 52, 73, 76, 103, 111].

A number of previous methods represent the estimated 3D shape as a voxelized 3D
occupancy grid [14, 37, 39, 73, 89, 103, 120]. While it may seem straightforward to
extend 2D CNNs to process 3D data by utilizing 3D convolutional kernels, data sparsity
and computational complexity are the restrictive factors of this type of approaches. The
source of data sparsity is that most of the information, which is needed to compute
the 3D structure, is provided by the surface voxels. In fact, the part which the shape
representation lies on the surface of the 3D object, makes up only a small fraction
of all voxels in the occupancy grid. This makes 3D CNNs computational expensive
yielding considerable amount of overhead during training and inference. To overcome
these issues, recent methods focus on designing neural network architectures and
loss functions to process and predict 3D point clouds. These point clouds consist
of points which are uniformly sampled over the object surfaces. For example, Fan
et al.[28] introduces a framework and loss functions designed to generate unordered
point clouds directly from 2D images. Jiang et al.[52] extends this pipeline by adding
geometrically driven loss functions for training. Groueix et al.[34] represents a 3D
shape as a collection of parametric surface elements to infer the surface representation of
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Figure 3.1: Most of the existing methods generate point clouds directly from RGB
input images. In contrast, our method first predicts the depth map of the RGB input
image and infers the partial (view-specific) point cloud. The transformation of the
partial point cloud is based on the camera model. In this way, the camera model is
explicitly used as a geometrical constraint to steer the 2D-3D domain transfer. Then, a
full 3D point cloud is generated. A 3D-2D refinement process is used to enforce the
alignment between the generated full 3D point cloud and the depth map prediction.

the shape. However, the inference procedure does not explicitly impose any geometrical
constraint. Therefore, these models purely rely on the quality of training data and the
effectiveness of learning to generalize.

In this chapter, we propose a pipeline to sequentially predict the depth map to infer the
full 3D object shape, see Figure 3.1. The transformation of the depth map into the partial
point cloud is driven by the camera model. In this way, the camera model is explicitly
used as a geometrical constraint to steer the 2D-3D domain transfer. Our method is
composed of three components, namely, depth intermediation, point cloud completion
and 3D-2D refinement, see Figure 3.2 for a detailed overview of our pipeline.

First, given a single RGB image of an object, the depth intermediation module predicts
the depth map, and then computes the point cloud of the visible part of the object in
image space. We refer to this (single-view) point cloud as the partial point cloud. The
computation of the partial point cloud is based on the camera model geometry. In
this way, we explicitly impose the camera model as a geometrical constraint in our
transformation to regulate the 2D-3D domain transfer.

Then, the point cloud completion module infers the full point cloud using the partial
point cloud as input. To preserve the context of point clouds and utilize neighboring
relationships between points, partial point clouds are first encoded by unit 3D grid basis
point sets. Then, a 3D convolutional neural network is used to compute context-aware
features. The output is further processed by a folding-based decoder to generate a full
point cloud.
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Finally, the 3D-2D refinement process enforces the alignment between the generated
full point cloud and the depth map prediction. The refinement module imposes a 2D
projection criterion on the generated point cloud together with the 3D supervision on
the depth estimation. This self-supervised mechanism enables our network to jointly
optimize both the depth intermediation and the point cloud completion modules.

In summary, our contributions are as follows:

• A novel neural network pipeline to generate 3D shapes from single monocular
RGB images by depth intermediation.

• Incorporating the camera model as a geometrical constraint to regulate the 2D-3D
domain transfer.

• A 3D-grid based point cloud completion module to generate fine-grained full
point clouds.

• A 3D-2D refinement module to jointly optimize both depth estimation and point
cloud generation.

• Superior performances on the task of 3D single-view reconstruction on both syn-
thetic dataset (ShapeNet) and real dataset (Pix3D) to demonstrate the generality
and suitability of the proposed method.

3.2 Related Work

Depth Estimation Single-view, or monocular, depth estimation refers to the problem
where only a single image is available at test time. Eigen et al.[26] shows that it is
possible to produce pixel-wise depth estimation using a two scale deep network which
is trained on images with their corresponding depth values. Several methods extend this
approach by introducing new components such as CRFs to increase the accuracy [63],
changing the loss from regression to classification [10], using other more robust loss
functions [57], and by incorporating scene priors [112]. Recently, there are a number
of methods to estimate the depth in an unsupervised way. Godard et al.[33] proposes
an unsupervised deep learning framework by introducing loss functions which impose
consistency between predicted depth maps which are obtained from different camera
viewpoints. Kuznietsov et al.[56] adopts a semi-supervised deep learning method to
predict depth maps from single images. As opposed to existing methods, in our work,
we use supervised depth estimation to produce depth maps to enable the inference of
3D shapes. Moreover, our 3D-2D refinement module uses the generated full point cloud
as a 3D supervision algorithm to steer the depth estimation.

Feature Learning on Point Clouds Because of the irregular nature of point clouds,
they cannot be processed in a straightforward manner by standard grid-based CNNs.
Only recently, a number of methods are proposed that apply deep learning directly on
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Figure 3.2: Overview of our framework. Our proposed network receives a RGB image
as input. It predicts the depth map of the input image, and calculates the partial point
cloud based on the camera geometry. Then, the predicted partial point cloud is encoded
by the unit 3D grid basis point set and taken by a 3D convolutional neural network to
produce the sparse full point cloud. The final full point cloud is generated in a sparse-
to-dense fashion via a folding-based decoder. Finally, the 3D-2D refinement module
enforces the alignment between the generated full 3D point cloud and the estimated
depth map.

(raw) 3D point clouds. PointNet [80] is the pioneering work that directly processes 3D
point sets in a deep learning setting. The modified version of PointNet, PointNet++
[84], abstracts local patterns by sampling representative points and recursively applying
PointNet as a learning component to obtain the final representation. Zeng et al.[130]
introduces 3DContextNet that exploits both local and global contextual cues imposed
by the k-d tree to learn point cloud features hierarchically. Yang et al.[123] proposes a
folding-based decoder that deforms a canonical 2D grid onto the underlying 3D object
surface of a point cloud. Prokudin et al.[79] introduces basis points sets to obtain a
compact fixed-length representation of point clouds. In this chapter, we leverage regular
3D grids as basis point sets to regularize unordered partial point clouds. In this way, the
network is able to learn spatial-context aware features to complete the missing parts of
the partial point clouds.

3D Shape Completion Shape completion is an essential task in geometry and shape
processing. The aim of conventional methods is to complete shapes using local surface
primitives, or to formulate it as an optimization problem [75, 97]. With the advances
of large-scale shape repositories like ShapeNet [11], researchers start to develop fully
data-driven methods. For example, 3D ShapeNets [116] use a deep belief network to
obtain a generative model for a given shape database. Nguyen et al.[106] extends this
method for mesh repairing. Most of the existing learning-based methods represent
shapes by voxels. In contrast, our method uses point clouds. Point clouds preserve the
full geometric information about the shapes while being memory efficient. Related to
our work is PCN [128], which uses an encoder-decoder network to generate full point
clouds in a coarse-to-fine fashion. However, the proposed method is not limited to the
shape completion task. Our aim is to generate the full point cloud of an object from a
single RGB image.

Single-image 3D Reconstruction Traditional 3D reconstruction methods are, in gen-
eral, based on multi-view geometry. The major research directions include structure
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from motion (SfM) [92] and simultaneous localization and mapping (SLAM) [9]. Re-
cently, increasing attention has focused on data-driven 3D voxel reconstruction from
single images [14, 28, 120]. Choy et al.[14] proposes 3D-R2N2. The method takes as
input one or more images of an object taken from different viewpoints. The output is
the reconstruction of the object in the form of a 3D occupancy grid by means of recur-
rent neural networks. As a follow-up work, Gwak et al.[37] makes use of foreground
masks for 3D reconstruction by constraining the reconstruction to be in the space of
unlabeled real 3D shapes. Wu et al.[114] also attempts to reconstruct the 3D shapes
from 2.5D sketches. They first compute the 2.5D sketches of objects and then treat
the predicted 2.5D sketches as intermediate images to regress the 3D shapes. Tulsiani
et al.[107] presents a framework that allows to learn a single view prediction of a 3D
structure without direct supervision of shape or pose. Richter et al.[89] poses 3D shape
reconstruction as a 2D prediction problem to leverage well-proven architectures for
2D pixel-prediction. Mescheder et al.[73] implicitly represents the 3D surface as the
continuous decision boundary of a deep neural network classifier. Different from the
above methods, our proposed approach explicitly imposes the camera model in the
2D-3D transformation and infers the partial point clouds from predicted depth maps
purely based on 3D geometry.

Voxel-based methods are computationally expensive and are only suitable for coarse
3D voxel resolutions. To overcome this issue, Fan et al.[28] introduces a framework to
regress unordered point clouds directly from 2D images. Jiang et al.[52] extends this
pipeline by adding geometrically driven loss functions for training. Groueix et al.[34]
introduces an approach to generate parametric surface elements for 3D shapes. The
learnable parametrizations transform a set of 2D squares to the surface, covering it in
a way similar to an atlas. Mandikal et al.[69] proposes a latent-embedding matching
method to learn the prior over 3D point clouds. It first trains a 3D point cloud auto-
encoder and then learns a mapping from the 2D image to the corresponding learned
embedding. Wang et al.[111] represents 3D meshes in a graph-based convolutional
neural network and produce correct geometry by progressively deforming an ellipsoid,
leveraging perceptual features extracted from the input image. Nguyen et al.[76]
proposes to blend the image features with a random point cloud and deform it to the
final representative point set of the object. Different from these above methods, our
approach sequentially predicts the depth map, infers the partial point cloud based on
the camera model, and generates the full point cloud of the 3D shape. In addition, the
proposed method explicitly enforce the alignment between the generated point cloud
and the estimated depth map by jointly optimizing both of the components.

3.3 Method

We propose a pipeline that generates point clouds from RGB images by depth inter-
mediation. To compute a 3D point cloud from a single-view RGB image, our network
uses three modules: (1) a depth intermediation module is proposed to predict depth
maps and calculate the partial point clouds based on the camera model geometry; (2) a
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Figure 3.3: Depth maps and their corresponding partial point clouds. From top to
bottom: (1) ground truth, (2) depth estimation without and (3) depth estimation with 3D-
2D refinement. It can be (visually) derived that when depth estimation is transformed
into a partial point cloud (based on the camera model), the predicted partial point cloud
without refinement may suffer from errors (i.e. ”flying” points). This is clearly visible
in the second row. This type of estimation errors are largely reduced by our 3D-2D
refinement process (third row). Best viewed in color.

point cloud completion module is proposed to infer full 3D point clouds from predicted
partial point clouds; (3) and a 3D-2D refinement mechanism is proposed to enforce the
alignment between the generated point clouds and the estimated depth maps. Our full
pipeline can be trained in an end-to-end fashion and enables to jointly optimize both
depth estimation and point cloud generation.

3.3.1 Depth Intermediation

The first component of our network takes a 2D RGB image of an object as input. It
predicts the depth map of the object and calculates the (visible) point cloud based on
the camera model. The aim of the depth intermediation module is to regulate the 2D-3D
domain transfer and to constrain the structure of the learned manifold. Most of the
previous methods directly generate the 3D shape from a single 2D image. Although they
use geometry-driven loss functions during training, the inference procedure does not
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explicitly impose any geometrical constraint. In contrast, our method uses the predicted
depth map to compute the partial point cloud. In this way, during inference, geometrical
constraints are still explicitly incorporated by means of depth estimation and the camera
model.

An encoder-decoder network architecture is used for our depth estimation. Note that any
deeper depth estimation networks can be easily plugged in our proposed pipeline, due to
the simplicity of the object-level depth estimation, we stay with the simple configuration
of the architecture in this work. The encoder is a VGG-16 [96] architecture up to layer
conv5 3 encoding a 224× 224 RGB image into 512 feature maps of size 7× 7. The
decoder contains five 3× 3 deconvolutional layers with layer sizes (256, 128, 64, 64,
64). Then, four 1× 1 convolutional layers with layer sizes (64, 64, 64, 1) are applied to
encourage individuality to the generated pixels. Skip connections link the related layers
between the encoder and decoder. The output is the corresponding depth map with the
same resolution as the 2D RGB input image.

Then, the partial point cloud is computed using the camera model. For a perspective
camera model, the correspondence between a 3D point (X,Y, Z) and its projected pixel
location (u, v) on an image plane is given by:

Z[u, v, 1]T = K(R[X,Y, Z]T + t) (3.1)

where K is the camera intrinsic matrix. R and t denote the rotation matrix and the
translation vector, which are already included because the partial point cloud is view-
specific. So in this work, it simplifies to Z[u, v, 1]T = K[X,Y, Z]T . We assume that
the principal points coincide with the image center, and that the focal lengths are known.
Note that when the exact focal length is not available, an estimation (approximation)
may still suffice.

In general, object-level depth estimation is coarse. Hence, the corresponding partial
point cloud may suffer from noise (e.g. flying points) at the boundaries along the frustum.
The aim of our 3D-2D refinement is to enforce the partial point cloud to be consistent
with the full point cloud. The goal is to reduce the estimation errors at the boundaries.
For example, consider Figure 3.3, where depth maps and their corresponding partial
point clouds are shown. The predicted partial point cloud without refinement (second
row) suffers from errors (i.e. flying points). This type of estimation errors are largely
reduced by our 3D-2D refinement process (third row).

3.3.2 Point Cloud Completion

The full point cloud is inferred by learning a mapping from the space of partial obser-
vations to the space of complete shapes. Most previous methods (e.g. PCN [128] and
FoldingNet [123]) use Multi-layer Perceptrons (MLPs) to directly process point clouds,
which may cause the loss of details because the structure and context of point clouds are
not fully considered. Inspired by basis point sets (BPS) [79], in this chapter we encode
the partial point clouds as minimum distances to a fixed set of 3D grid points. Having
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Figure 3.4: Detail architecture for point cloud completion module. The partial point
cloud is first encoded by the 3D grid basis point set, and then processed by the following
3DCNN. The full point cloud is generated by the folding-based decoder.

the partial point cloud X = {x1, ...xn, xi ∈ R3} and the unit 3D grid basis point set
B = {b1, ...bk, bj ∈ R3} (in this work we use k = 323), we compute the directional
delta vector from each basis point to the nearest point in the partial point cloud:

XB = {(argmin
xi∈X

d(bj , xi)− bj)} ∈ Rk×3 (3.2)

In this way, the structure and context of point clouds are explicitly preserved by the 3D
grid representation. Furthermore, encoding by the 3D grid basis point set regularizes the
unordered partial point cloud which allows the network to fully utilize the neighborhood
relationship to learn context-aware features.

As shown in Figure 3.4, after encoded by the 3D grid basis point set, a 3D convolutional
neural network (3D-CNN) is applied to complete the missing parts of the partial point
cloud. The encoder of the 3D-CNN has four 3D convolutional layers with layer size (32,
64, 128, 256), each of the layers is followed by a max-pooling layer with a kernel size
of 23. The encoder is then followed by two fully connected layers with sizes of 1024
and 2048. The decoder consists of four deconvolutional layers to transpose back to the
original size of the 3D grid basis point set. The output of the 3D-CNN has two branches:
one is the set of predicted delta vectors of the complete point cloud with respect to the
3D grid. The other is the confidence map for each point of the 3D grid. The confidence
map represents the distances from the basis points to the nearest points in the complete
point cloud, with higher confidence indicating the closer distance between points. Then,
the point coordinates are recovered by adding the output delta vectors to the 3D grid
basis point set. We sub-samplem = 256 sparse point clouds according to the confidence
map as key point sets to abstract the entire 3D shapes and input them to the following
folding-based decoder to generate the final full point cloud. For each key point x̂i, a
patch of t = u2 points (u = 2 in our experiments) is generated in local coordinates
centered at x̂i via the folding-based decoder. Eventually, a N = 1024 complete point
cloud is generated as output of the network. Note that here we set N = 1024 in order
to have a fair comparison with existing methods as it is the common choice.
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3.3.3 3D-2D Refinement

In this section, the aim is (1) to align the predicted point cloud and the corresponding
estimated depth map and (2) to jointly optimize both the depth intermediation and the
point cloud completion module.

For the depth intermediation network, flying points may occur in the inferred partial
point cloud near the object boundaries along the frustum, as shown in Figure 3.3. The
cause of this is the lack of contextual information for object-level depth estimation.
Therefore, the aim of the 3D-2D refinement is to reduce these estimation errors (i.e.
depth noise reduction).

To reduce the depth estimation errors, the generated point cloud is used as a 3D self-
supervision component. A point-wise 3D Euclidean distance is used between the partial
point cloud and the full point cloud, which is defined by:

Ld(Pp, Pf ) =
∑
pi∈Pp

min
pj∈Pf

| pi − pj |22 (3.3)

where Pp and Pf are the predicted partial point cloud and the predicted full point cloud,
respectively. This regularizes the partial point cloud to be consistent with the full point
cloud with the aim to reduce the noise.

To constrain the generated point cloud using the 2D projection supervision, we penalize
points in the (full point cloud) projected image Ip which are outside the silhouette Is:

Lp =
∑
qi∈Qp

1((Ip(qi)− Is(qi)) > 0) min
qj∈Qs

| qi − qj |22 (3.4)

where Qp and Qs represent the pixel coordinates of the projected image and the silhou-
ette, respectively. 1(.) is an indicator function set to 1 when a projected point is outside
the silhouette. The goal of this constraint is to recover the details of the 3D shape.

3.3.4 Discussion

The relevant work to our method is GenRe proposed by Zhang et al [133]. Both methods
factorize f2D→3D into geometry projections and learnable reconstruction modules, the
differences are as follows: (1) Shape completion space. Our method performs shape
completion in a 3D point-cloud space, while GenRe performs spherical map inpainting
in a 2D image space. (2) End-to-end training. Our method is fully differentiable and can
be trained end-to-end, while GenRe is not. To project depth to a spherical map, GenRe
casts rays from each UV coordinate on the unit sphere to the center of the sphere to
generate the spherical representation. This process part is not differentiable. In contrast,
our method converts depth maps to point clouds using camera parameters. Our process
is fully differentiable. So our pipeline can be trained end-to-end and jointly optimize
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both the depth intermediation and the point cloud completion modules. (3) Efficiency
of the model. Our model has one projection from depth maps to point clouds and
performs 2D convolutions on point coordinates. In contrast, GenRe has three geometry
projections and perform 3D convolutions on voxels. Compared with GenRe, our model
is faster in inference time (51ms vs. 542ms) with a smaller model size (180MB vs.
452MB). GenRe generalizes well to diverse novel objects from categories not seen
during training, but for the single image 3D object reconstruction task, experimental
results in the next section show that the proposed method outperforms GenRe for all of
the 13 categories in ShapeNet dataset.
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3.4 Experiments

Training Details: Our networks are optimized using the Adam optimizer. To initialize
our networks properly, we follow a two-stage training procedure: the depth estimation
network and the point cloud completion network are first pretrained separately to predict
the depth maps and the complete point clouds. The depth estimation network is trained
with the L2 loss. Note that the ground truth depth map is the only ground truth we need
to supervise the depth estimation. The partial point cloud is obtained from the depth
map using the camera model (pure geometry transformation), so the full supervision
for the partial point cloud is also the ground truth depth map, which is already used in
the pipeline. For pre-training the point cloud completion network, the ground-truth full
point cloud is used as target and penalised by the Chamfer distance loss. This is how
the network infers what to fill in for the missing parts of 3D point cloud. Then the self-
supervisions from Eq. 3.3 and Eq. 3.4 are used as complementary constraints in the joint
end-to-end training. We also tried to use the ground truth full point cloud to supervise
the partial point cloud, but the results are similar. However, when applying/fine-tuning
the model to other real-world datasets without 3D ground truth, the self-supervision
defined by Eq. 3.3 can be used to regularize the partial point cloud to be consistent with
the predicted full point cloud.

Evaluation Metric: We evaluate the different methods using three metrics: point-cloud
based Chamfer Distance (CD), point-cloud based Earth Mover’s Distance (EMD) and
voxel-based Intersection over Union (IoU).

The Chamfer Distance measures the distance between the predicted point cloud Pp and
the ground truth point cloud Pgt. This loss is defined by:

LCD(Pp, Pgt) =
1

|Pp|
∑
x∈Pp

min
y∈Pgt

| x− y |22 +

1

|Pgt|
∑
y∈Pgt

min
x∈Pp

| x− y |22
(3.5)

The Earth Mover’s Distance requires Pp, Pgt ⊆ R3 to have equal size s = |Pp| = |Pgt|.
The EMD distance is defined by:

LEMD(Pp, Pgt) =
1

|s|
min

φ:Pp→Pgt

∑
x∈Pp

| x− φ(x) |22 (3.6)

where φ : Pp → Pgt is a bijection. A lower CD/EMD value represents a better
reconstruction result.

To compute the IoU of the predicted and ground truth point clouds, we follow the setting
of GAL [52]. Each point set is voxelized by distributing points on 32× 32× 32 grids.
The point grid for each point is defined as a 1× 1× 1 grid centered at this point. For
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Table 3.2: The IoU of the 3D reconstruction results on ShapeNet. It is shown that our
proposed method achieves higher IoU for most of the categories and a higher overall
IoU.

3D-R2N2 PSGN GAL PCDNet Ours1 view 3 views 5 views
airplane 0.513 0.549 0.561 0.601 0.685 0.758 0.682
bench 0.421 0.502 0.527 0.550 0.709 0.725 0.713
cabinet 0.716 0.763 0.772 0.771 0.772 0.770 0.809

car 0.798 0.829 0.836 0.831 0.737 0.819 0.725
chair 0.466 0.533 0.550 0.544 0.700 0.663 0.702

monitor 0.468 0.545 0.565 0.552 0.804 0.735 0.819
lamp 0.381 0.415 0.421 0.462 0.670 0.516 0.674

speaker 0.662 0.708 0.717 0.737 0.698 0.708 0.743
firearm 0.544 0.593 0.600 0.604 0.715 0.747 0.753
couch 0.628 0.690 0.706 0.708 0.739 0.770 0.752
table 0.513 0.564 0.580 0.606 0.714 0.605 0.725

cellphone 0.661 0.732 0.754 0.749 0.773 0.857 0.789
watercraft 0.513 0.596 0.610 0.611 0.675 0.754 0.677

mean 0.560 0.617 0.631 0.640 0.712 0.725 0.736

each voxel, the maximum intersecting volume ratio of each point grid and this voxel is
calculated as the occupancy probability. IoU is defined as follows:

IoU =

∑
i 1[Vgt(i)Vp(i) > 0]∑

i 1[Vgt(i) + Vp(i) > 0]
(3.7)

where Vgt and Vp are the voxelized ground-truth and prediction, respectively. i is the
index of the voxels. 1 is an indicator function. A higher IoU value indicates a better
point cloud prediction.

ShapeNet Dataset: We train and evaluate the proposed networks using the ShapeNet
dataset [11] containing a large collection of categorized 3D CAD models. The same
training/testing split as in 3D-R2N2 [14] is used. Since the proposed method needs the
ground truth depth maps to guide the depth intermediation step, we re-render the RGB
images and the corresponding depth maps for each instance from 12 different views.
For a fair comparison, we re-produce the results for GenRe [133], GAL [52] and show
the quantitative comparison of CD and EMD metric in Table 3.1.

3D-R2N2 [14] takes as an input one or more images of an object which are taken from
different viewpoints. The method outputs a reconstruction of the object in the form of a
3D occupancy grid. PSGN [28] utilizes fully-connected layers and deconvolutional lay-
ers to predict 3D points directly from 2D images. Pixel2Mesh [111] designs a projection
layer which incorporates perceptual image features into 3D geometry represented by
graph based convolutional network. It predicts 3D geometry in a coarse to fine fashion
and generates a 3D mesh model from a single RGB image. GenRe [133] combines
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Table 3.3: Verification of the depth estimation module. The performance of the VGG-
16-based network is similar to FCRN. Therefore we choose VGG-16 for simplification.
The depth estimation network strongly benefits from the 3D self-supervision approach
of the 3D-2D refinement module. All numbers are scaled by a factor of 10.

FCRN Our depth module (VGG-16)
w/o refinement w/ refinement

airplane 0.152 0.166 0.105
bench 0.424 0.421 0.358
cabinet 0.576 0.584 0.499

car 0.273 0.267 0.258
chair 0.926 0.968 0.890
lamp 0.417 0.428 0.399

monitor 0.684 0.707 0.639
rifle 0.051 0.047 0.046
sofa 0.554 0.551 0.497

speaker 0.741 0.731 0.672
table 0.287 0.298 0.282

telephone 0.261 0.259 0.237
vessel 0.270 0.271 0.260
mean 0.432 0.438 0.395

2.5D representations of visible surfaces, spherical shape representations of both visible
and non-visible surfaces and 3D voxel-based representations, in a principled manner to
capture generic shape priors. GAL [52] proposes a complementary loss, the geometric
adversarial loss, to geometrically regularize predictions from a global perspective. PCD-
Net [76] deforms a random point set according to an input object image and produce a
point cloud of the object by a network consisting of GraphX. As shown in Table 3.1,
our method outperforms existing methods for most of the categories for both CD and
EMD metric. In addition, our method achieves a lower overall mean score.

A number of qualitative results are shown in Figure 3.5. The first row shows that PSGN,
PCDNet and our method perform well in generating the full point clouds for some
simple objects and regular shapes. In the second and third row, our method provides
accurate structures, while either PSGN or PCDNet fail at recovering parts of the 3D
shapes (e.g. the rear end of the Pick-up in the second row, the backrest of the bench
in the third row). It is shown that our method also generates a better pose estimation,
see viewpoint v2 in the fourth row. Further, the result of our proposed method is more
aligned with the ground truth than PSGN. Failure cases are shown in the last row which
all methods are not able to capture the correct structure of the chair leg.

Table 3.2 shows the IoU value for each category in ShapeNet dataset. It can be derived
that our method obtains a better IoU for most of the categories. Our method explicitly
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Figure 3.5: Qualitative results for the ShapeNet dataset. We demonstrate the reconstruc-
tion results from two representative viewpoints v1 and v2. Compared to PSGN and
GAL, the proposed method is better in capturing the overall shape and in generating
finer details.

incorporates the camera model as a geometrical constraint to regulate the 2D-3D domain
transfer. As a consequence, the generated point clouds are more aligned with the ground
truth point clouds.

We also verify the choice of the depth estimation network and the benefit from the
3D-2D refinement module. FCRN [57] is a very deep depth estimation network based
on ResNet-50. Since the object-level depth estimation in our task is relatively simple,
the performance of FCRN is similar to the shallow VGG-16-based architecture, as
shown in the first two columns in Table 3.3. Therefore, in our depth intermediation
module, we choose VGG-16 for simplification. The third column of Table 3.3 shows
that the depth estimation network benefits significantly from the 3D self-supervision
strategy. As shown in Figure 3.3, the depth estimation with only 2D supervision may
suffer from the estimation error near the boundaries along the frustum. With our 3D-2D
refinement, the generated full point cloud is utilized as 3D self-supervision to reduce
the estimation error.

NED Dataset: We consider the The Natural Environment Dataset (NED) [58] to
evaluate our proposed pipeline. In contrast to man-made objects, the NED dataset
consists of (3D) synthetic scene-centric images from outdoor (natural) environments
like gardens and parks. Images are rendered with the physics-based Blender Cycles
engine1. The model textures and skies are used from real-world images to provide a
realistic look of the scenes. Three categories are selected: hedges, rocks and topiaries.

1https://www.blender.org/
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Table 3.4: Quantitative comparison on the NED dataset. Our proposed method outper-
forms the other methods to recover the point clouds of the three categories of NED.

CD↓ EMD↓ IoU↑

hedge
PSGN 0.645 1.156 0.526

PCDNet 0.311 0.484 0.704
Ours 0.274 0.428 0.697

rock
PSGN 0.459 0.697 0.583

PCDNet 0.253 0.396 0.607
Ours 0.219 0.375 0.649

topiary
PSGN 0.370 0.736 0.435

PCDNet 0.229 0.376 0.633
Ours 0.207 0.339 0.648

mean
PSGN 0.491 0.863 0.514

PCDNet 0.264 0.419 0.648
Ours 0.233 0.381 0.665

We follow the same rendering (scene-centric) settings of the dataset to render the object-
centric images. We train and test PSGN, PCDNet and our method on these images,
see Figure 3.6. Since in this setting the objects are relatively simple and regular, both
PCDNet and our method can generate accurate 3D point clouds while PSGN fails
for some parts of the 3D shapes (for example the wrong oval shape of the hedges in
the first two rows and the missing finer shape details of the rock in the third row for
PSGN). Table 3.4 shows the quantitative results for this dataset. Our proposed method
outperforms the other methods to recover the point clouds of the three categories of
NED.

Pix3D Dataset: Pix3D [102] is a large-scale dataset containing diverse image-shape
pairs with pixel-level 2D-3D alignment. For a fair comparison, the chair subset is
selected. The chair subset of Pix3D [102] contains 3839 images with the corresponding
3d models. To fine-tune the models trained on ShapeNet, the first 3000 image-shape
pairs are used as training data. The last 839 pairs are testing data for both models
without and with fine-tuning. Figure 3.7 demonstrates a number of quantitative results
from fine-tuning models for this dataset. Since in this setting the task is relatively
challenging, all three methods perform reasonable well in visually perspective. But our
method can capture more details of the shapes (for example the chair leg in the first row,
the pose of the chair in the fourth row and the overall shape of the chair in the last row).
Table 3.5 shows the results without and with fine-tuning for each method. It can be
derived that for both cases, the proposed method outperforms the other state-of-the-art
methods.

Ablation Study: In this section, ablation experiments are conducted to analyze the
performance of different components in our full pipeline. To this end, the chair subset
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Figure 3.6: Qualitative results on the object-centric NED dataset. Since in this setting
the objects are relatively simple and regular, both GAL and our method can generate
accurate 3D point clouds while PSGN fails for some parts of the 3D shapes.

of ShapeNet is selected to re-train the proposed method.

Depth intermediation component: An important component of our approach is the
depth intermediation module which regulates the 2D-3D domain transfer. To test the
influence of the quality of the depth map estimation, during evaluation, different levels
of Gaussian noise are added to the predicted depth maps to verify the robustness of
the proposed method to depth noise. PSNR is used to measure the amount of noise.
A lower PSNR value indicates a noisier image. In general, for computer vision tasks,
acceptable values for PSNR are considered to be above 30dB. As shown in Figure 3.8
(a), our proposed method is quite robust in the range above 30dB.

Camera model component: Another component is the camera model which is used
as a geometrical constraint to steer the 2D-3D domain transfer. We assume that the
focal length is known (which is not always the case). Therefore, in the experiments, we
analyze the robustness of the used camera model for different focal length estimations
in terms of deviations from the ground truth (focal length). Figure 3.8 (b) shows the
CD and EMD with regard to the deviations from the ground truth focal length. Our
proposed method can still provide reasonable results even when the estimated focal
lengths are 20% off from the ground truth focal length.
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Figure 3.7: Qualitative results on chair subset of Pix3D dataset. Since in this setting
the task is relatively challenging, all three methods perform reasonable well in visually
perspective. But our method can capture more details of the shapes.

Table 3.5: Quantitative comparison of CD and EMD metric for the chair subset of the
Pix3D dataset. The proposed method outperforms the other state-of-the-art methods.

w/o fine-tuning w/ fine-tuning
CD↓ EMD↓ IoU↑ CD↓ EMD↓ IoU↑

PSGN 0.389 0.453 0.143 0.357 0.412 0.167
PCDNet 0.297 0.386 0.148 0.261 0.354 0.185

Ours 0.193 0.249 0.168 0.142 0.213 0.244
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(a) Robustness to depth noise (b) Influence of focal length

(c) Different size of 3D grid (d) Efficiency of 3D-2D refinement

Figure 3.8: Ablation study for the different components of the proposed pipeline.

3D grid basis point set component: The 3D grid basis point set is used to encode the
unordered partial point cloud to learn context-aware features. To verify the influence of
the size of the 3D grid, we train models with different sizes of 3D grid basis point set.
The baseline is the PCN [128] without any 3D grid encoding. As shown in Figure 3.8
(c), as the 3D grid size increases, the performance of the network is also improved. To
achieve a balance between the effect and efficiency, we choose the 3D grid size as 323

in this work.

3D-2D refinement component: The 3D-2D refinement module in our proposed pipeline
is crucial to reduce the depth estimation errors. In Table 3.6 we show the performance
gap with and without 3D-2D refinement module comparing to baseline PSGN on the
chair subset of ShapeNet. In order to verify the robustness of the 3D-2D refinement
module against noise, we train models for different Gaussian noise levels. Here injecting
Gaussian noise to alter the depth predictions is to simulate the situations that the depth
predictions are inaccurate. As shown in Figure 3.8 (d), the performance gap enlarges
dramatically when PSNR decreases, which shows the robustness of the proposed 3D-2D
refinement module with respect to the inaccurate depth estimation. This indicates that
our 3D-2D refinement module can greatly reduces the depth noise and produces more
accurate point clouds.

Images In The Wild: We also test the generalizability of our approach on real-world
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Table 3.6: The performance gap with and without 3D-2D refinement module comparing
to baseline PSGN (No adding Gaussian noise).

CD↓ IoU↑
PSGN (Baseline) 0.645 0.544
Ours (w/o 3D-2D refinement) 0.485 0.626
Ours (w/ 3D-2D refinement) 0.253 0.702

Figure 3.9: Qualitative results for a number of real-world images. Our proposed method
(trained on synthetic data) generalizes well to real-world images.
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images. We use the model trained on the ShapeNet dataset and directly run it on real-
world images which are randomly selected from the Internet (with manually created
masks). We consider these real-world images as captured by different cameras and with
different camera parameters. We use estimated focal lengths during evaluation. Results
are shown in Figure 3.9. Our proposed method can generate overall smooth point clouds
(e.g. the second and fourth row) and capture more details (table leg in the third row) for
the objects in the in-the-wild images. It indicates that our model trained on synthetic
data generalizes well to the real-world images.

3.5 Conclusion

In this chapter, we propose an efficient framework to generate 3D point clouds from
single monocular RGB images by sequentially predicting the depth maps and inferring
the complete 3D object shapes. Depth estimation and camera model are explicitly
incorporated in our pipeline as geometrical constraints during both training and infer-
ence. We also enforce the alignment between the predicted full 3D point clouds and the
corresponding estimated depth maps to jointly optimize both depth intermediation and
the point completion module.

Both qualitative and quantitative results on ShapeNet, NED and Pix3D show that our
method outperforms existing methods. Furthermore, it also generates precise point
clouds for real-world images. In the future, we plan to extend our framework to
scene-level point cloud generation.
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4
Joint 3D Layout and Depth Prediction

from a Single Indoor Panorama

4.1 Introduction

Extracting 3D information from 2D indoor images is an important step towards the
enabling of 3D understanding of indoor scenes and is beneficial for many applications
such as robotics and virtual/augmented reality. Using the 3D information of indoor
scenes, a computer vision system is able to understand the scene geometry, including
both the apparent and hidden relationships between scene elements.

Although scene layout and depth can both be used for 3D scene understanding, previous
methods focus on solving these two problems separately. For 3D layout prediction,
methods mostly use 2D geometrical cues such as edges [68, 101, 139], corners [60, 101,
139], 2D floor-plans [66, 122] or they make assumptions about the 3D scene geometry
such that rooms are modelled by cuboids or by a Manhattan World. For depth estimation,
different features are used such as normals [64], planar surfaces [74] and semantic
cues [86]. Hence, existing methods impose geometric assumptions but ignore to exploit
the complementary characteristics of layout and depth information. In this chapter, a
different approach is taken. We propose a method that, from a single panorama, jointly
exploits the 3D layout and depth cues via an intermediate layout depth map, as shown in
Figure 4.1. The intermediate layout depth map represents the distances from the camera
to the room layout components (e.g. ceiling, floor and walls) and excludes all objects in
the room (e.g. furniture), as illustrated in Figure 4.2. Estimating the layout depth as
an intermediate representation of the network encompasses the geometric information
needed for both tasks. The use of depth information is beneficial to produce room
layouts by reducing the complexity of object clutter and occlusion. Likewise, the use of
room layout information diminishes the ambiguity of depth estimation and interposes
planar information for the room layout parts (e.g. ceiling, floor and walls).

The proposed method estimates the 3D layout and detailed depth information from a
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Figure 4.1: Given (a) an indoor panorama as input, our proposed method utilizes the (b)
coarse depth estimation to compute the (c) layout depth map. Leveraging the estimated
layout depth map, our method improves the (d) 3D layout prediction and (e) refines the
depth estimation (e.g. the ambiguous window depth is inferred correctly compared to
the coarse depth estimation).

single panorama image. To combine the depth and layout information, the proposed
method predicts the layout depth map to relate these two tightly intertwined tasks.
Previous methods on layout prediction provides proper reconstruction by predicting
the layout edges and corners on the input panorama and by post-processing them to
match the (Manhattan) 3D layout [60, 101, 139]. However, object clutter in the room
poses a challenge to extract occluded edges and corners. In addition, estimating the
3D layout from 2D edge and corner maps is an ill-posed problem. Therefore, extra
constraints are essential to perform 2D to 3D conversion in the optimization. In contrast,
our method estimates the layout depth map by using more structural information to
become less influenced by occlusions. Furthermore, the predicted layout depth map
serves as a coarse 3D layout as it can be converted to the 3D point cloud of the scene
layout. Thus the proposed method does not require extra constraints for the 2D to 3D
conversion. This makes the proposed method more generic for parameterizing a 3D
layout. After computing the estimated layout depth maps, the proposed method further
enables the refinement of a detailed depth map. Monocular depth estimation methods
usually have problems with planar room parts (ceiling, floor and walls) being rugged
after the 3D reconstruction process. The layout depth map preserves the planar nature
of the room layout components yielding robustness to these errors. Empirical results
on the challenging Stanford 2D-3D indoor dataset show that jointly estimating 3D
layout and depth outperforms previous methods for both tasks. The proposed method
achieves state-of-the-art performance for both layout prediction and depth estimation
from a single panorama image on the Stanford 2D-3D dataset. Our method also obtains
state-of-the-art performance for 3D layout prediction on the PanoContext dataset.

In summary, our contributions are as follows:
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Figure 4.2: Illustration of the layout depth maps. From left to right: the panorama input
image, the original layout corner map and the layout depth map.

• We propose a novel neural network pipeline which jointly learns layout prediction
and depth estimation from a single indoor panorama image. We show that layout
and depth estimation tasks are highly correlated and joint learning improves the
performance for both tasks.

• We show that leveraging the layout depth map as an intermediate representation
improves the layout prediction performance and refines the depth estimation.

• The proposed method outperforms the state-of-the-art methods for both layout
prediction and depth estimation on the challenging real-world dataset Stanford
2D-3D and PanoContext dataset for layout prediction.

4.2 Related Work

Panorama Images: Operating directly on panorama input images is the primary differ-
ence between our method and most of the other layout prediction or depth estimation
methods. Instead of perspective images, 360◦ panorama images are used as input by
our proposed method because the field of view (FOV) of panoramas are larger and carry
more scene information. However, the equirectangular projections may suffer from
strong horizontal distortions. Su et al. [100] propose to learn a spherical convolutional
network that translates a planar CNN to process 360◦ panorama images directly in its
equirectangular projection. Tateno et al. [104] proposes a distortion-aware deformable
convolution filter. Another approach is to use spherical convolutions as proposed by
Cohen et al. [15]. Other recent papers [16, 25, 51] also focus on spherical CNNs
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and icosahedron representations for panorama processing. In this chapter, standard
convolutions with rectangular filter banks are applied on the input layers to account for
the different distortion levels.

Layout Prediction: There are numerous papers that address the problem of predicting
the 3D room layout from a single image taken from an indoor scene. Traditional
methods treat this task as an optimization problem. Delage et al. [22] propose a
dynamic Bayesian network model to recover the 3D model of the indoor scene. Lee [62]
outlines several physically valid structure hypotheses to find the best fitting model to
line the segments, which are then converted to a full 3D model. Hedau [43] models
the room with a parametric 3D box by iteratively localizing clutter and refitting the
box. Recently, neural network-based methods took stride in tackling this problem.
Methods that train deep network to classify pixels into layout surfaces (e.g., walls, floor,
ceiling) [50], boundaries [68], corners [60], or a combination [88]. Zhang et al. [135]
extend the previous methods of vanishing point detection, hypothesis generation, and
scoring hypotheses to fully use the 3D contextual information. Yang et al. [121] build
and solve a constraint graph based on partially oriented lines and superpixels. Yang
et al. [124] sample the input panorama as local perspective sub-views and extract
geometric and semantic cues to convert 2D panoramas to 3D. Zou et al. [139] predict
the layout boundary and corner map directly from the input panorama. Yang et al. [122]
leverage both the equirectangular panorama-view and the perspective ceiling-view to
learn different cues about the room layout. Sun et al. [101] encode the room layout
as three 1D vectors and propose to recover the 3D room layouts from 1D predictions.
Other work aims to leverage depth information for room reconstruction [65, 132, 140],
but they all deal with perspective images and use the ground truth depth as input. In
contrast, in our method, we use the predicted depth and semantic content of the scene
to predict the layout depth map as our intermediate representation to recover the 3D
layout of the input panorama.

Depth Estimation: Single-view depth estimation refers to the problem of estimating
depth from a single 2D image. Eigen et al.[26] show that it is possible to produce
pixel depth estimations using a two scale deep network which is trained on images with
their corresponding depth values. Several methods extend this approach by introducing
new components such as CRFs to increase the accuracy [64], changing the loss from
regression to classification [10], using other more robust loss functions [57], and by
incorporating scene priors [112]. Zioulis et al. [137] propose a learning framework
to estimate the depth of a scene from a single 360◦ panorama image. Eder et al. [24]
present a method to train a plane-aware convolutional network for dense depth and
surface normal estimation from panoramas. There are some other methods [23, 109]
to regress the layered depth image (LDI) to capture the occluded texture and depth. In
our work, we demonstrate that the layout prediction and depth estimation are tightly
coupled and can benefit from each other. Leveraging the estimated layout depth map,
our method refines the depth estimation.
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Figure 4.3: Overview of the proposed pipeline. Our method first leverages the coarse
depth and semantic prediction to enforce the layout depth prediction, and then uses the
estimated layout depth map to recover the 3D layout and refine the depth estimation.

4.3 Method

The goal of our approach is the joint learning of layout prediction and depth estimation
from a single indoor panorama image. The proposed method leverages the layout
depth map as an intermediate representation to relate the layout and depth estimation.
Figure 4.3 shows an overview of our proposed pipeline.

Inferring high-quality 3D room layout from an indoor panorama image relies on the
understanding of both the 3D geometry and the semantics of the indoor scene. Therefore,
the proposed method uses the predicted coarse depth map and semantic segmentation of
the input panorama to predict the layout depth map. The proposed method enables the
refinement of depth estimation by integrating the coarse depth and layout depth with
semantic information as a guidance.

4.3.1 Input and Pre-processing

Following [139], the first step of our method is to align the input panorama image
to match the horizontal floor plane. The floor plane direction under equirectangular
projection is estimated by first selecting the long line segments using the Line Segment
Detector (LSD) [110] in overlapping perspective views and then vote for three mutually
orthogonal vanishing directions [135]. This alignment ensures that wall-wall boundaries
are vertical lines. The input of our network is the concatenation of the panorama image
and the corresponding Manhattan line feature map provided by the alignment.
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4.3.2 Coarse Depth and Semantics

Our approach receives the concatenation of a single RGB panorama and the Manhattan
line feature map as input. The output of this module is the coarse depth estimation and
semantic segmentation of the 2D panorama image.

An encoder-decoder architecture is used for the joint learning of the coarse depth
information and semantic segmentation. The input panorama images suffer from
horizontal distortions. To reduce the distortion effect, the encoder uses a modified input
block in front of the ResNet-18 architecture. As shown by [137], the input block uses
rectangle filters and varies the resolution to account for different distortion levels. The
encoder is shared for both the depth estimation and semantic segmentation. The decoders
restore the original input resolution by means of up-sampling operators followed by
3 × 3 convolutions. Skip connections are also added to link to the corresponding
resolution in the encoder. The two decoders do not share weights and are trained to
minimize the coarse depth estimation loss and semantic segmentation loss, respectively.

Loss Function: For coarse depth estimation, to account for both pixel-wise accuracy
and spatially coherent results, this module incorporates the depth gradient and normals
with the logarithm of the standard L1 loss, as done by [45]. So the loss function consists
of three parts:

Lcoarse depth = ldepth + λlgradient + µlnormal (4.1)

where λ, µ ∈ R are hyper-parameters to balance the contribution of each component
loss. The depth loss ldepth, the gradient loss lgradient and the surface normal loss
lnormal are defined by:

ldepth =
1

n

n∑
i=1

ln(ei + 1) (4.2)

where ei = ‖di − gi‖1, di and gi denote the predicted and ground truth depth maps
respectively. n is the total number of pixels.

lgradient =
1

n

n∑
i=1

(ln(|∇x(ei)|+ 1) + ln(|∇y(ei)|+ 1)) (4.3)

where∇x(ei) is the spatial derivative of ei computed at the ith pixel with respect to x,
and so on.

lnormal =
1

n

n∑
j=1

(
1−

〈ndj , n
g
j 〉√

〈ndj , ndj 〉
√
〈ngj , n

g
j 〉

)
(4.4)

where ndi ≡ [−∇x(di),−∇(di), 1]
> and ngi ≡ [−∇x(gi),−∇(gi), 1]

> denote the
surface normal of the estimated depth map and the ground truth, respectively.
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For semantic segmentation, the loss function is given by the per-pixel softmax cross-
entropy between the predicted and ground-truth pixel-wise semantic labels:

Lsemantic = −
n∑
i=1

pi log(p̂i) (4.5)

where p and p̂ are the ground truth and predicted semantic labels, respectively.

4.3.3 Layout Prediction

To obtain the global geometric structure of the scene, the proposed approach predicts the
3D layout of the scene. Instead of predicting 2D representations, our method directly
predicts the layout depth maps of the input panoramas.

The input of this proposed module is a 8-channel feature map: the concatenation of
RGB panorama, the corresponding Manhattan line feature map, and the predicted depth
and semantics obtained by the previous modules of the pipeline. A ResNet-18 is used
to build our encoder for the layout depth prediction network. The decoder architecture
is similar to the previous ones for depth estimation and semantic segmentation, with
nearest neighbor up-sampling operations followed by 3 × 3 convolutions. The skip
connections are also added to prevent shifting of the prediction results during the up-
sampling step. The output is the estimated layout depth map with the same resolution
as the input panorama.

Loss Function: In addition to the pixel-wise depth supervision as described in Section
4.3.2, the virtual normal (VN) [127] is used as another geometric constraint to regulate
the estimated layout depth map. The point cloud of the scene layout can be reconstructed
from the estimated layout depth map based on the panoramic camera model. The virtual
normal is the normal vector of a virtual plane formed by three randomly sampled non-
colinear points in 3D space, which takes long-range relations into account from a global
perspective. By minimizing the direction divergence between the ground-truth and
predicted virtual normals, serving as a high-order 3D geometric constraint, the proposed
method provides more accurate depth estimation and imposes the planar nature to the
prediction of the layout depth map.

N group points are randomly sampled from the point cloud. In each group there are
three points: Ω = {Pi = (Pa, Pb, Pc)i | i = 0, ..., N}. The three points in a group are
restricted to be non-colinear as defined by condition C:

C = {α ≥ ∠(
−−−→
PaPb,

−−−→
PaPc) ≤ β, α ≥ ∠(

−−→
PbPc,

−−−→
PbPa) ≤ β | Pi ∈ Ω} (4.6)

where α = 150◦, β = 30◦ in our experiments.

Three points in each group establishes a virtual plane. The normal vector of the plane is
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computed by:

N = {ni =

−−−→
PaPb ×

−−−→
PaPc

‖
−−−→
PaPb ×

−−−→
PaPc‖

| Pi ∈ Ω} (4.7)

where ni is the normal vector of virtual plane Pi.

The virtual normal loss is computed by:

lvn =
1

N

N∑
i=1

‖npredi − ngti ‖1 (4.8)

The overall loss for layout depth map estimation is defined by:

Llayout depth = ldepth + λlgradient + µlnormal + lvn (4.9)

The layout depth loss is based on both the local surface normal and the global virtual
normal constraint. This ensures that the estimated layout depth map preserves the
geometric structure of the scene layout accurately.

3D Layout Optimization: To constrain the layout shape so that the floor and ceiling
are planar and the walls are perpendicular to each other (Manhattan world assumption),
the proposed method recovers the parameterized 3D layout through optimization in 3D
space. Previous methods [60, 101, 139] heavily rely on 2D image features (e.g. edge
and corner maps). However, estimating the 3D layout from 2D edge and corner maps
is an ill-posed problem and thus requires extra constraints. In contrast, our proposed
method directly optimizes on the 3D layout point cloud and does not require extra
constraints for the 2D to 3D layout conversion.

Using the point cloud of the scene layout converted from the predicted layout depth
map, the floor/ceiling plan map is obtained by projecting the point cloud to the XZ
plane. Similar to [122], a regression analysis is applied on the edges of the floor plan
map and clustering them into sets of horizontal and vertical lines in 3D space. Then, the
floor plan is recovered by using the straight, axis-aligned, wall-floor boundaries. The
room height is efficiently computed by using the ceiling-floor distances along the Y
axis.

4.3.4 Depth Refinement

After the coarse depth map and the layout depth map are obtained from the previous
modules, a depth refinement step is taken.

A straight-forward way is to concatenate all the data representations as input and use
an encoder-decoder network to predict the final depth estimation. This approach is
denoted by direct refinement. The semantic approach is to use the semantic information
as a guidance to dynamically fuse the two depth maps. This approach is denoted
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by semantic-guided refinement. The semantic-guided refinement step produces an
attention map incorporating the coarse depth map and the layout depth map. For a
structural background representing the scene layout components (ceiling, floor and
wall), the network focuses more on the layout depth map. While for objects in the
room (furniture), the network switches the attention to the coarse depth estimation.
Therefore, in this chapter, we combine these two concepts as shown in Figure 4.3. First,
an encoder-decoder network, taking the concatenation of the coarse depth, layout depth
and semantic segmentation prediction as inputs, combines the previous depth maps with
the semantic-guided attention map. This semantic-guided depth fusion maximizes the
exploitation of the coarse depth and layout depth. Then, the depth refinement module
takes the fused depth as input to predict the final refined depth. The encoder-decoder
architecture of the depth refinement module is similar to the previous coarse depth
estimation network.

Loss Function: The loss function for the depth refinement is the same as the layout
depth estimation loss described in Section 4.3.3.

4.3.5 Training Details

Following the experimental setting of [139], the proposed method uses horizontal
rotations, left-right flippings and luminance changes to augment the training samples.
Our network uses the ADAM [53] optimizer with β1 = 0.9 and β2 = 0.999 to update
the network parameters. To train the network, we first train the joint learning of coarse
depth estimation and semantic segmentation, and then fix the weights of the depth and
semantic network, and train the layout depth map prediction. Then, we set all the trained
weights fixed to train the depth refinement module. Finally, we jointly train the whole
network end-to-end.

4.4 Experiments

In this section, the performance of our proposed method is evaluated for both the layout
prediction and depth estimation tasks.

Dataset: The dataset used for training is the Stanford 2D-3D dataset [3]. The Stanford
2D-3D dataset contains 1413 RGB panoramic images collected from 6 large-scale
indoor environments, including offices, classrooms, and other open spaces like corridors,
where 571 panoramas have layout annotations. Our experiments follow the official train-
val-test split for evaluation. The PanoContext dataset is used to verify the generalizability
of our approach for the task of layout prediction. The PanoContext [135] dataset contains
514 RGB panoramic images of two indoor environments, i.e., bedrooms and living
rooms.
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Table 4.1: Quantitative results of layout estimation on the Stanford 2D-3D dataset. Our
method outperforms all existing methods.

Method 3D IoU(%) Corner error(%) Pixel error(%)
LayoutNet [139] 76.33 1.04 2.70
DuLa-Net [122] 79.36 0.79 2.55

HorizonNet [101] 79.79 0.71 2.39
Ours 85.81 0.67 2.20

Evaluation Metrics: The following standard metrics are used to evaluate our approach:

3D IoU: 3D IoU =
Vpred∩Vgt

Vpred∪Vgt
, where Vpred and Vgt stand for the volumetric occupancy

of the predicted and ground truth 3D layout.

Corner error (CE): CE = 1√
H2+W 2

∑
i∈corners‖c

pred
i − cgti ‖22, where H and W are

the image height and width, cpred and cgt denote the predicted and ground truth corner
positions.

Pixel error (PE): PE = 1
|N |
∑N
i=1 1(spredi 6= sgti ), where spred and sgt denotes the

predicted and ground truth pixel-wise semantic (ceiling, floor and wall). 1(.) is an
indicator function, setting to 1 when the pixel semantic prediction is incorrect.

Threshold: % of di that max(digi ,
gi
di

) = δ < thr

Absolute Relative Difference: Abs Rel = 1
|N |
∑N
i=1‖di − gi‖/gi

Squared Relative Difference: Sq Rel = 1
|N |
∑N
i=1‖di − gi‖2/gi

RMSE (linear): RMS =
√

1
|N |
∑N
i=1‖di − gi‖2

RMSE (log): RMS(log) =
√

1
|N |
∑N
i=1‖log di − log gi‖2

where we use 3D IoU, corner error and pixel error to evaluate the layout prediction and
the rest for depth estimation.

4.4.1 Layout Prediction

A quantitative comparison of different methods on the Stanford 2D-3D dataset is
summarized in Table 4.1. LayoutNet [139] predicts the layout boundary and corner maps
directly from the input panorama. DuLa-Net [122] leverages both the equirectangular
panorama-view and the perspective ceiling-view to learn different cues for the room
layout. HorizonNet [101] encodes the room layout as three 1D vectors and proposes to
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Table 4.2: Quantitative results on the (a) Stanford 2D-3D and (b) PanoContext for
models trained with mixed PanoContext and Stanford 2D-3D training data. Our method
outperforms other methods on both datasets.

Method 3D IoU(%) CE(%) PE(%)
LayoutNet [139] 77.51 0.92 2.42
HorizonNet [101] 83.51 0.62 1.97

Ours 86.21 0.71 2.08

(a) Results for Stanford 2D-3D

Method 3D IoU(%) CE(%) PE(%)
LayoutNet [139] 75.12 1.02 3.18
HorizonNet [101] 84.23 0.69 1.90

Ours 84.40 0.61 1.74
(b) Results for PanoContext

Figure 4.4: Qualitative comparison on layout prediction. Results are shown of testing
the baseline LayoutNet [139] (blue), our proposed method (green) and the ground truth
(orange) on the Stanford 2D-3D dataset and PanoContext dataset.

recover the 3D room layout from 1D predictions by a RNN. The proposed method shows
state-of-the-art performance and outperforms other existing methods. By leveraging the
layout depth map as an intermediate representation, the proposed network abstracts the
geometric structure of the scene from both a local and global perspective. This results in
more geometric cues for the scene layout prediction and is less affected by occlusions.

LayoutNet [139] and HorizonNet [101] also combine the Stanford 2D-3D [3] and
PanoContext [135] training data to train their methods. Since the PanoContext dataset
does not contain any depth or semantic ground truth, our model is first initialized with
the Stanford 2D-3D dataset, and then the model is trained on the same mixed dataset
with the weight-fixed coarse depth and semantic prediction modules. Table 4.2 shows
the quantitative results trained on this mixed training data. Although the PanoContext
dataset has different indoor configurations and no depth or semantic ground truth, our
method still obtains competitive performance.

The qualitative results for the layout prediction are shown in Figure 4.4. The first
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Table 4.3: Ablation study of layout prediction and layout depth map estimation on the
Stanford 2D-3D dataset. We evaluate the influence of different modules and show that
our final proposed approach performs the best.

lower is better higher is better
3D IoU(%) CE(%) PE(%) Abs Rel Sq Rel RMS RMS(log) δ < 1.25 δ < 1.252 δ < 1.253

wo/ depth & semantic 77.28 1.21 3.31 0.089 0.044 0.327 0.056 0.914 0.987 0.996
w/ pred. depth 82.65 0.83 2.92 0.069 0.029 0.257 0.045 0.952 0.993 0.998

w/ pred. semantic 78.57 1.14 3.18 0.079 0.034 0.311 0.053 0.927 0.990 0.997
wo/ VN 84.22 0.75 2.42 0.065 0.028 0.238 0.043 0.955 0.993 0.998

edg & cor maps 82.03 1.05 2.61 - - - - - - -
layout depth

–> edg & cor maps 83.67 0.92 2.52 0.067 0.029 0.238 0.044 0.955 0.992 0.998

Proposed Final 85.81 0.67 2.20 0.064 0.026 0.237 0.042 0.957 0.994 0.998

two rows demonstrate the results of the LayoutNet and our proposed method on the
Stanford 2D-3D dataset. The last two rows are the results obtained for the PanoContext
dataset. The proposed method outperforms the other methods on both datasets and
shows robustness to occlusion. As presented by the second example for Stanford
2D-3D, since the proposed method explicitly incorporates the depth information, the
corners are located more precisely (avoiding locations in the middle of the wall which
has continuous depth). The semantic content ensures the detection of the occluded
corners, as shown in the third example of Stanford 2D-3D (corners occluded by the
door). The last example of the Stanford 2D-3D shows a failure case for both methods.
For non-negligible occlusions in the scene, both methods fail to predict the corner
positions accurately. Similar improvements are shown for the results obtained for the
PanoContext dataset.

Ablation Study: The goal is to evaluate the performance of our layout prediction
and layout depth estimation with different configurations: 1) wo/ depth&semantic:
predicting the layout depth directly from the input; 2) w/ pred. depth: only with the
predicted depth; 3) w/ pred. semantic: only with the predicted semantic; 4) wo/ VN:
without the VN loss; 5) edg&cor maps: predicting the edge and corner maps from
the concatenation of input panorama, predicted depth and semantic; 6) layout depth
-> edg&cor maps: predicting the edge and corner maps from the layout depth map.
As shown in Table 4.3, training with either predicted depth or semantic information
increases the accuracy. The VN loss further regulates the estimated layout depth to
preserve surface straightness, thus improving the recovered layout. In comparison
with the edge and corner maps, the layout depth map contains both local and global
information to recover the 3D layout of the scene.

Non-cuboid Layout: To verify the generalization ability of our proposed method to
non-cuboid layout, our model is fine-tuned on the non-cuboid rooms labeled by [101].
As shown in Figure 4.5, our proposed method is able to handle non-cuboid layout rooms.
Please see more results in the supplemental materials.
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Figure 4.5: Qualitative results of non-cuboid layout prediction. It can be derived that
our proposed method also works well for non-cuboid layouts.

Table 4.4: Quantitative results and ablation study of depth estimation on the Stanford
2D-3D dataset. Our method outperforms all existing methods.

lower is better higher is better
Abs Rel Sq Rel RMS RMS(log) δ < 1.25 δ < 1.252 δ < 1.253

FCRN [57] 0.091 0.057 0.364 0.134 0.913 0.982 0.995
RectNet[137] 0.082 0.046 0.399 0.123 0.928 0.988 0.997

DistConv [104] 0.176 - 0.369 0.083 - - -
Plane-aware [24] 0.079 0.029 0.290 0.120 0.934 0.990 0.998

Proposed Coarse-depth 0.105 0.045 0.352 0.094 0.934 0.989 0.997
Proposed Direct-refinement 0.089 0.033 0.269 0.095 0.944 0.989 0.998
Proposed Semantic-guided 0.086 0.033 0.273 0.096 0.944 0.989 0.998

Proposed Final 0.068 0.026 0.264 0.080 0.954 0.992 0.998

4.4.2 Depth Estimation

Table 4.4 presents the quantitative results of different methods for depth estimation
on the Stanford 2D-3D dataset. FCRN [57] designs a supervised fully convolutional
residual network with up-projection blocks. RectNet [137] proposes a specific pipeline
for depth estimation using panoramas as input. DistConv [104] trains on perspective
images and then regress depth for panorama images by distortion-aware deformable
convolution filters. Plane-aware [24] designs the plane-aware loss which leverages
principal curvature as an indicator of planar boundaries. The results demonstrate that
our proposed method obtains state-of-the-art depth estimation results from a single
panorama image. The qualitative comparison is shown in Figure 4.6. In the first image,
the RectNet [137] is confused by the transparent window, which is a common failure
case in depth estimation. The Plane-aware network [24] and our proposed network
overcome this issue. Our result for the window region is smoother due to the constraints
from the layout depth. In the second image, the distant regions are too ambiguous to
predict the corresponding depth. Our proposed method predicts a proper depth map
because of the explicit inter-positioning of the layout depth. Because of the proposed
semantic-guided refinement, the proposed method also preserves better object details
compared to the other two methods, as shown in the third and fourth image. Figure 4.7
illustrates the derived surface normals from the estimated depth map. Constrained by
the layout depth map, the surface normal results demonstrate that our proposed method
preserves the planar property for depth estimation.
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Figure 4.6: Qualitative comparison on depth estimation. Results are shown for testing
the baseline RectNet [137], Plane-aware network [24] and our proposed method on the
Stanford 2D-3D dataset.

Table 4.5: Quantitative comparison of the proposed method for joint training. It is
shown that joint training improves the performance for all the proposed modules.

lower is better higher is better
3D IoU(%) CE(%) PE(%) Abs Rel Sq Rel RMS RMS(log) δ < 1.25 δ < 1.252 δ < 1.253

Coarse depth - - - 0.112 0.049 0.379 0.116 0.930 0.988 0.997
Coarse depth (joint) - - - 0.105 0.045 0.352 0.094 0.934 0.989 0.997

Depth refinement - - - 0.084 0.032 0.273 0.088 0.950 0.989 0.998
Depth refinement (joint) - - - 0.068 0.026 0.264 0.080 0.954 0.992 0.998

Layout depth 84.69 0.75 2.43 0.069 0.029 0.257 0.046 0.951 0.993 0.998
Layout depth (joint) 85.81 0.67 2.20 0.064 0.026 0.237 0.042 0.957 0.994 0.998

Ablation Study: An ablation study is conducted to evaluate the performance of the pro-
posed method for different configurations, as shown in Table 4.4: 1) Proposed Coarse-
depth: the depth estimation from the first decoder; 2) Proposed Direct-refinement: the
depth refinement using all the data representation as input, as stated in Section 4.3.4;
3) Proposed Semantic-guided: the depth fusion using semantic-guided attention map,
as state in Section 4.3.4. It is shown that the direct-refinement performs better than
the coarse-depth. This indicates that the joint learning with layout prediction already
improves the depth estimation. Semantic-guided refinement improves the performance
which supports our argument to dynamically fuse the layout depth map and the coarse
depth estimation based on background and foreground regions. Our proposed final
method obtains the best overall performance for all variations.

Table 4.5 shows the quantitative comparison for each module of the proposed pipeline
before and after joint training. It demonstrates that all the modules benefit from joint
training.
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Figure 4.7: Comparison of the derived surface normal from the depth estimation. Our
proposed method produces smoother surfaces for planar regions.

4.5 Conclusion

We proposed a method to jointly learn the layout and depth from a single indoor
panorama image. By leveraging the layout depth map as an intermediate representation,
the optimization of 3D layout does not require extra constraints and the refined depth
estimation preserves the planarity for the layout components. Experiment results on
challenging indoor datasets show that, with the proposed method for joint learning, the
performance of both the layout prediction and depth estimation from single panorama
images is significantly improved and that our method outperforms the state-of-the-art.
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5
Pano2Scene: 3D Indoor Semantic Scene
Reconstruction from a Single Panorama

5.1 Introduction

3D indoor semantic scene reconstruction from 2D images is important for different
computer vision applications such as robot-environment interaction and interior design.
At the same time, panorama images are currently enjoying a surge in popularity and
witnessing increased adoption in robotic applications and marketing productions. In
this chapter, we focus on the reconstruction of a full 3D indoor semantic scene point
cloud from a single panorama image.

Most of the previous works on semantic scene reconstruction are dealing with perspec-
tive images. Tulsiani et al.[108] propose a voxel-based representation to reconstruct the
3D structure of the scene, but the resolution is limited and the computational cost for
scene-level voxel reconstruction yields considerable amount of overhead during training
and inference. Izadinia et al.[50] reconstruct a scene by retrieving similar meshes from a
large database of furniture CAD models. However, the method requires many iterations
of model rendering and the accuracy is highly dependent on the similarity of the CAD
models in the database. Gkioxari et al.[32] proposed Mesh R-CNN to predict object
meshes for multiple objects in an image, but it ignores the scene information and suffers
from the artifacts of mesh generation on cubified voxels. Recently, [77] proposes a
method to jointly reconstruct the room layout, object bounding boxes and meshes from
a single perspective image. However, the method requires dense and clean meshes
for proper object mesh reconstruction, which is tedious and labor-consuming for real
scenes. Furthermore, previous methods can only partially reconstruct indoor scenes as
the perspective images have limiting effects on the field of view. In contrast to previous
methods, our approach reconstructs the full 3D indoor semantic scene point cloud from
a single 2D panorama image. The proposed pipeline jointly learns to predict the 3D
scene (room) layout, complete object (furniture) shapes and reconstruct the full scene
point cloud.

63



5. Pano2Scene: 3D Indoor Semantic Scene Reconstruction from a Single
Panorama

Previous methods on panorama layout estimation predict the 2D layout edges and
corners in the input panorama and by post-processing them to match the (Manhattan)
3D layout [60, 101, 139]. However, object clutter poses a challenge to properly extract
the occluded edges and corners. In addition, constraints are imposed in the optimization
process to compute the 2D to 3D conversion. In contrast to existing methods, our
method directly estimates the layout depth map. The predicted layout depth map can
serve as a coarse 3D layout by converting it to a 3D point cloud of the scene layout.
Hence, the proposed method does not require extra constraints for the 3D optimization.

As to object shape completion, most previous work focus on object-level completion [35,
105, 123, 128], in which the input are normally clean partial point clouds. In contrast,
our method aims to full scene-level object completion. Due to the accuracy limitation of
scene-level depth estimation and instance segmentation, the partial object point clouds
inferred from the predicted depth and instance masks are typically noisy and deformed.
The proposed method projects the noisy global feature vectors onto the manifold of the
clean ones to overcome the noise and deformations in the predicted partial point clouds.

To impose the global constraints for the scene-level reconstruction and enforce con-
sistency between the reconstructed scene point cloud and the panorama input, it is
critical to jointly train our pipeline end-to-end. The proposed method equirectangularly
projects the inferred complete object point clouds back on the 2D panorama to minimize
the losses of the projected object masks and depth with respect to the ground truth.
Experimental results indicate that joint training further advances the reconstruction
accuracy. To the best of our knowledge, our approach is the first to reconstruct the full
3D indoor semantic scene point cloud from a single panorama image.

In summary, our contributions are as follows:

• A unified semantic scene reconstruction pipeline is proposed to reconstruct the
full 3D indoor semantic scene point cloud from a single panorama image.

• To recover the 3D layout of the scene, the method estimates the layout depth map
and reconstruct the parameterized 3D layout. Our method obtains state-of-the-art
performance for 3D layout estimation from a single panorama image.

• To generate the full point cloud of objects in the scene, the method completes the
object point cloud from the visible partial point cloud via global feature vector
mapping to obtain robustness to noise and deformations in the predicted partial
point cloud.

• To enforce consistency between the reconstructed scene point cloud and the
panorama input, the method projects the inferred complete object point cloud
back on the 2D panorama and jointly trains the full pipeline end-to-end.
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Figure 5.1: Overview of our pipeline. The whole process consist of three modules: 1)
depth and instance segmentation; 2) 3D layout estimation; 3) object shape completion.
The output is the reconstructed 3D indoor semantic scene point cloud of the panorama
input.

5.2 Related Work

Layout Prediction: Traditional methods treat this task as an optimization problem.
Delage et al.[22] propose a dynamic Bayesian network model to recover the 3D model
of the indoor scene. Hedau et al.[43] model the room with a parametric 3D box by
iteratively localizing clutter and refitting the box. Recently, neural network-based
methods took stride in tackling this problem. Methods that train deep network to
classify pixels into layout surfaces (e.g., walls, floor, ceiling) [50], boundaries [68],
corners [60], or a combination [88]. Zhang et al.[135] extend the previous methods of
vanishing point detection, hypothesis generation, and scoring hypotheses to fully use the
3D contextual information. Yang et al.[121] build and solve a constraint graph based on
partially oriented lines and superpixels. Yang et al.[124] sample the input panorama
as local perspective sub-views and extract geometric and semantic cues to convert 2D
panoramas to 3D. Zou et al.[139] predict the layout boundary and corner map directly
from the input panorama. Yang et al.[122] leverage both the equirectangular panorama-
view and the perspective ceiling-view to learn different cues of the room layout. Sun
et al.[101] encode the room layout as three 1D vectors and propose to recover the 3D
room layouts from 1D predictions. Other works aims to leverage depth information for
room reconstruction [65, 132, 140], but they all deal with perspective images and use
ground truth depth as input. In contrast to previous methods, in this chapter, we predict
the layout depth map as the intermediate representation to recover the 3D layout of the
input panorama.

Point Cloud Completion: Fan et al.[28] propose an architecture consisting of an
encoder which encodes the input into an embedding, and a decoder which generates
the point cloud from the embedding. Yang et al.[123] generate a point cloud structured
as a manifold through a series of deformation (folding) operations on the Euclidean
plane. Yuan et al.[128] combine the fully-connected decoder and the folding decoder
to generate point clouds in two stages. Groueix et al.[35] design a decoder that learns
a manifold by computing a mapping from the Euclidean plane to the ground-truth
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point cloud. Tchapmi et al.[105] propose a decoder that generates a structured point
cloud without assuming any specific structure or topology on the underlying point
set. [131] decomposes the single-view point cloud generation into depth estimation
and point cloud completion. The proposed method extends this concept to scene-level
reconstruction. The global feature vector mapping is used to obtain robustness to noise
and deformations in the inferred partial point cloud.

Semantic Scene Reconstruction: Indoor scene reconstruction from images is an es-
sential task in computer vision and graphics. A number of existing approaches [13, 48]
estimate the object poses together with the room layout [22, 43]. However, these
methods focus on the prediction of the 3D bounding box for each object. Other meth-
ods [49, 50] use 3D model retrieval modules to improve the shape quality in scene
reconstruction. [32, 77, 108] only need a single image as input to reconstruct multiple
object shapes in a scene. [32] produces object meshes, but ignores scene context and
suffers from the artifacts of mesh generation on cubified voxels. [108] is designed for
voxel reconstruction with limited resolution. [77] requires clean and dense meshes to
supervise object mesh reconstruction. Different from all existing methods, our proposed
method combines depth estimation, instance segmentation, 3D layout estimation and
object shape completion through a joint learning (end-to-end) pipeline to reconstruct
the 3D indoor semantic scene point cloud from a single panorama image.

5.3 Method

The overview of the proposed pipeline is illustrated in Figure 5.1. Our pipeline consists
of three modules: (1) the depth and instance segmentation module predicts the depth
map and instance segmentation masks from the panorama input; (2) the 3D layout
estimation module recovers the 3D scene layout from the estimated layout depth map;
(3) the object shape completion module infers the complete object point cloud from the
visible partial point cloud. The proposed pipeline reconstructs the full scene point cloud
by embedding the outputs of all modules together by joint training and inference. The
details of each module are discussed in this section.

5.3.1 Depth and Instance Segmentation

The first module of the proposed pipeline consists of depth estimation as well as instance
segmentation from a single panorama image.

Depth Estimation: For this task, different CNN models for depth estimation exist [10,
24, 26, 57, 112, 137]. In our work, the fully convolutional ResNet-50 architecture
proposed by Laina [57] is used. However, the equirectangular panorama may suffer
from horizontal distortions. To reduce this distortion effect, the encoder uses a modified
input block. As shown by [137], the input block uses rectangle filters and varies the
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Figure 5.2: Demonstration of the 3D layout estimation module. This module estimates
the (b) layout depth of the (a) panorama input, then recovers the parameterized 3D
scene layout. (c) is the 3D layout point cloud directly recovered from the estimated
layout depth map. The (d) final 3D layout constrain the layout shape to Manhattan
world assumption.

resolution to account for different distortion levels. One more up-projection layer is
also added to the original FCRN network architecture so that the output depth preserves
the input resolution.

Instance Segmentation: In our method, Mask R-CNN [40] is used to segment im-
ages at the instance-level to obtain the object labels and corresponding masks. The
ResNet-101 backbone is used and initialized with pre-trained weights on the MSCOCO
dataset [1].

5.3.2 3D Layout Estimation

Similar to Chapter 4, to obtain the global geometric structure of the indoor scene, the
proposed approach predicts the 3D scene layout. Instead of predicting 2D representa-
tions (e.g. edge and corner maps), our method directly predicts the layout depth map
from the input panorama. The input of this proposed module is the concatenation of the
predicted depth map and the instance segmentation masks from previous module. The
network architecture of this module follows the classic encoder-decoder setting, with a
ResNet-18 as the encoder and a stack of 3× 3 deconvolutional kernels to restore the
original input resolution. The output is the estimated layout depth map with the same
resolution as the input panorama.

In this chapter, we use the same 3D layout optimization method as described in Chapter
4, to constrain the layout so that the floor and ceiling are planar and walls are perpen-
dicular to each other (Manhattan world assumption). As shown in Figure 5.2, after the
regression analysis on the edges of the floor plan map and cluster them into sets of
horizontal and vertical lines in 3D spaces, the 3D layout can be recovered and optimized
to meet the Manhattan world assumption.
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5.3.3 Object Shape Completion

After the depth map is estimated, the point cloud of the visible scene is calculated based
on the camera model. With the predicted instance masks, the visible partial point cloud
of each object is inferred. Limited by the accuracy of the scene-level depth estimation
and instance segmentation, the inferred partial point clouds are typically noisy and
deformed.

Object Point Cloud Completion: The full point cloud is inferred by learning a map-
ping from the space of partial observations to the space of complete shapes. To this end,
an encoder-decoder network architecture similar to PCN [128] is used. The aim of the
encoder E is to concisely represent the geometric information of the partial point cloud
by a global feature vector v. The decoder D, taking the global feature vector v as input,
first produces a sparse point cloud by a fully-connected decoder [28]. Then, a detailed
point cloud is obtained by a folding-based decoder [123]. In order to learn a prior over
the complete 3D point cloud, we train the encoder-decoder network (E, D) taking the
partial point cloud inferred from the ground truth depth and instance masks, i.e. the
clean partial point cloud, as input.

Global Feature Vector Mapping: If the inferred noisy and deformed partial point
cloud is passed through the encoder E, a ”noisy” global feature vector is obtained, i.e.
one that does not lie on the manifold of representations learnt by the above encoder-
decoder network (E, D). Hence, the task of completing the point cloud is reduced to
projecting the noisy global feature vector onto the manifold of clean ones. The cleaned
global feature vector can then be passed through the decoder D to obtain a complete
point cloud. Taking the estimated partial object point cloud as input, another encoder
Ed is trained. As shown in Figure 5.1, the global feature vector vd from Ed is mapping
to the clean global feature vector v from E. Then the global feature vector vd is passed
through the pre-trained decoder D to output the completed point cloud. The parameters
of D are not updated during this step. Through the global feature vector mapping in
latent space, the network becomes robust to noise and deformations in the predicted
partial point cloud.

5.3.4 Joint Learning for Semantic Scene Reconstruction

In this section, the learning targets are discussed with the corresponding loss functions,
and we describe our joint loss for end-to-end training.

Individual Losses: For depth estimation, the reverse Huber (berHu) loss is used:

Ldep =

{
ei ei ≤ c

e2i+c
2

2c else
(5.1)

where ei = ‖di−gi‖1, di and gi denote the predicted and ground truth depth respectively.
We follow [57] to set c = 1

5maxi(‖di − gi‖1).
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5.3. Method

For instance segmentation, the same losses as Mask R-CNN [40] are used:

Lseg = lcls + lbox + lmask (5.2)

where lcls, lbox and lmask denote the classification loss, the bounding-box loss and the
mask loss, respectively.

For 3D layout estimation, to account for both pixel-wise accuracy and spatially coherent
results of the layout depth estimation, the depth gradient and normals are incorporated
with the reverse Huber loss, as done by [45]:

Llayout dep = ldepth + lgradient + lnormal (5.3)

where ldepth, lgradient and lnormal denote the reverse Huber loss, the depth gradient
loss and the normal loss, respectively.

For point cloud completion, the Earth Mover’s Distance (EMD) is used to measure the
distance between the predicted point cloud Pp and the ground truth point cloud Pgt.
The EMD requires Pp, Pgt ⊆ R3 to have equal size s = |Pp| = |Pgt|, defined by:

LEMD =
1

|s|
min

φ:Pp→Pgt

∑
x∈Pp

| x− φ(x) |22 (5.4)

where φ : Pp → Pgt is a bijection. As to the latent space mapping for the global feature
vectors, the pipeline minimizes the L2 distance between the global feature vector vd
from the estimated partial object point cloud and the one v from the ground truth.

Lgfv = ‖vd − v‖22 (5.5)

Joint Losses: To enforce consistency between the reconstructed scene point cloud and
the panorama input, we define: (1) projected mask loss Lproj m, as the average binary
cross-entropy loss between the projected object masks and the ground truth masks; (2)
projected depth loss Lproj d, as the L2 loss between the projected object depth and the
ground truth object depth. As done by [52], we only use the non-zero pixels in the
projected depth map and search their neighbors to reduce the influence of projection
errors. With these two proposed joint losses, the poses and scales of the reconstructed
object point cloud are constrained and consistent with the panorama input image.

End-to-end joint training using all loss functions is defined by:

L = λdepLdep + λsegLseg + λlayout depLlayout dep + λEMDLEMD

+ λgfvLgfv + λproj mLproj m + λproj dLproj d
(5.6)

where λ∗ are the weights used to balance contribution of each component loss.
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5. Pano2Scene: 3D Indoor Semantic Scene Reconstruction from a Single
Panorama

Table 5.1: Quantitative results and ablation study of 3D layout estimation on the Stanford
2D-3D dataset. Our method outperforms all existing methods.

Method 3D IoU(%) Corner error(%) Pixel error(%)
LayoutNet [139] 76.33 1.04 2.70
DuLa-Net [122] 79.36 0.79 2.55

HorizonNet [101] 79.79 0.71 2.39
wo/ depth & semantic 77.25 1.23 3.40

w/ pred. depth 81.82 0.84 3.02
w/ pred. semantic 78.26 1.25 3.31

Ours 84.88 0.70 2.40

5.4 Experiments

In this section, the performance of our proposed pipeline is evaluated on 3D layout
estimation, object point cloud completion and 3D semantic scene reconstruction.

Dataset: The dataset used for training and testing is the Stanford 2D-3D dataset [3].
The Stanford 2D-3D dataset contains 1413 RGB panoramic images collected from 6
large-scale indoor environments, including offices, conference rooms, and other open
spaces. For each room there is real-scanned point cloud and annotated as furniture
(board, bookcase, chair, sofa, table) or building elements (ceiling, floor, wall, door,
window) or clutter.

Metrics: The 3D layout estimation is evaluated by: 1) 3D IoU: intersection over
union between predicted 3D layout and the ground truth; 2) Corner error (CE): average
Euclidean distance between predicted corners and ground-truth corners; 3) Pixel error
(PE): pixel-wise error between predicted surface classes and the ground truth.

The object point cloud completion is evaluated by the Chamfer Distance (CD) and Earth
Mover’s Distance (EMD). The Chamfer Distance measures the difference between the
predicted point cloud Pp and the ground truth point cloud Pgt, defined by:

LCD =
1

|Pp|
∑
x∈Pp

min
y∈Pgt

| x− y |22 +
1

|Pgt|
∑
y∈Pgt

min
x∈Pp

| x− y |22 (5.7)

The 3D scene reconstruction is also evaluated by the Chamfer Distance and Earth
Mover’s Distance.

Implementation: To initialize our networks properly, the pipeline follows a two-stage
training procedure: we first train depth estimation, instance segmentation, 3D layout
estimation, and object shape completion network individually. Then, we combine all
the networks and jointly train the pipeline end-to-end with the loss L in Equation 5.6.
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5.4. Experiments

Figure 5.3: Qualitative comparison on 3D layout estimation. For each example, the
predicted layout (HorizonNet [101]: blue, our proposed method: green) is shown
together with the ground truth (orange) under an equirectangular view.

5.4.1 3D layout Estimation:

A quantitative comparison of different methods for 3D layout estimation on the Stanford
2D-3D dataset is summarized in Table 5.1. LayoutNet [139] predicts the layout boundary
and corner maps directly from the input panorama. DuLa-Net [122] leverages both
the equirectangular panorama-view and the perspective ceiling-view to learn different
cues for room layout. HorizonNet [101] encodes the room layout as three 1D vectors
and proposes to recover the 3D room layout from 1D predictions by a RNN. Besides,
ablation studies of the proposed method are conducted as: 1) wo/ depth&semantic:
predicting the layout depth directly from the input; 2) w/ pred. depth: only with the
predicted depth; 3) w/ pred. semantic: only with the predicted semantic. The proposed
method shows state-of-the-art performance and outperforms other existing methods.
By leveraging the layout depth map as an intermediate representation, the proposed
network abstracts the geometric structure of the scene from both a local and global
perspective. This results in more geometric cues for the scene layout prediction and is
less affected by occlusions.

The qualitative results for the 3D layout estimation are shown in Figure 5.3. The
proposed method outperforms the other methods and shows robustness to occlusion.
As presented by the first two examples in the second row, with more global structure
information and semantic content, the detection of occluded corners are more accurate.
As shown in the third example in the second row, since the proposed method explic-
itly incorporates depth information, the corners are located more precisely (avoiding
locations in the middle of the wall which has continuous depth).

5.4.2 Object Point Cloud Completion:

To evaluate our proposed object shape completion module, the results are compared
with the baseline PointNet-FC as well as state-of-the-art methods FoldingNet [123] and
PCN [128], as shown in Table 5.2. The baseline PointNet-FC consists of the PointNet
encoder and a fully connected decoder with 4 layers of output dimensions 256, 512,
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5. Pano2Scene: 3D Indoor Semantic Scene Reconstruction from a Single
Panorama

Table 5.2: Point cloud reconstruction. Our proposed method performs the best for object
shape reconstruction and overall scene reconstruction.

Window Door Table Chair Sofa Bookcase Board Reconstructed Scene

CD

PointNet-FC (baseline) 0.011 0.022 0.039 0.015 0.043 0.018 0.006 0.022
FoldingNet [123] 0.009 0.018 0.035 0.009 0.039 0.016 0.004 0.019
PCN [128] 0.009 0.019 0.022 0.007 0.030 0.014 0.005 0.015
Ours (with GFV) 0.004 0.006 0.014 0.007 0.019 0.009 0.002 0.009
Our Final (with GFV & joint training) 0.004 0.004 0.011 0.004 0.017 0.008 0.002 0.007

EMD

PointNet-FC (baseline) 0.017 0.039 0.068 0.027 0.080 0.039 0.008 0.040
FoldingNet [123] 0.015 0.032 0.073 0.022 0.051 0.032 0.006 0.033
PCN [128] 0.014 0.031 0.033 0.016 0.048 0.021 0.006 0.024
Ours (with GFV) 0.008 0.011 0.025 0.015 0.033 0.018 0.004 0.016
Our Final (with GFV & joint training) 0.008 0.007 0.021 0.010 0.030 0.015 0.004 0.013

Figure 5.4: Qualitative comparison on 3D object point cloud completion.

1024, and 3×N (N = 1024 in our experiments). The FoldingNet proposes a folding-
based decoder that deforms a canonical 2D grid onto the underlying 3D object surface
of a point cloud. The PCN generates point clouds in 2 stages where the first stage is a
lower resolution point cloud and the second stage is the final output. With the global
feature vector mapping (GFV) to regulate the inferred partial point cloud, our proposed
module outperforms other methods for all categories.

A number of qualitative results are shown in Figure 5.4. The ground truth of Stanford 2D-
3D dataset, used as supervision, are real-scanned point clouds which may be incomplete.
This makes the object point cloud completion more challenging. FoldingNet tends to
generate continuous surfaces which could not preserve the gap between points (e.g.
doors) and details (e.g. chair leg in the second example of the first row). PCN could
abstract the global structures of the objects but the details are negatively affected by the
inferred noisy partial point clouds (e.g. both chairs examples). Through global feature
vector mapping, our proposed method generates plausible complete object point clouds.

5.4.3 3D Semantic Scene Reconstruction:

To impose the global constraints for the scene-level reconstruction and enforce consis-
tency between the reconstructed scene point cloud and the panorama input, we combine
all the modules and jointly train the pipeline end-to-end. As this is the first work, to
the best of our knowledge, to reconstruct the full 3D semantic scene point cloud from
a single panorama image, we report the quantitative results in Table 5.2 and illustrate
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5.4. Experiments

Panorama	Input Ours Ground	Truth

Figure 5.5: Qualitative results for 3D semantic scene reconstruction. Given a single
panorama image, our method (end-to-end) reconstructs the 3D indoor semantic scene
point cloud.

the qualitative results of the reconstructed semantic scene point cloud in Figure 5.5. As
shown in Table 5.2, with joint (end-to-end) training, the performance of the reconstruc-
tion is further improved. The examples in the first row in Figure 5.5 show the scenes
with clear views and less occlusions. The examples in the second row exhibit the input
panoramas with more clutter and large occlusions. The third row presents the results for
more complicate scenes. All the results manifest that, with different complexities, our
pipeline maintains visually appealing reconstructed semantic scene point cloud.
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Panorama

Panorama	Input Ours	Reconstruction Panorama	Input Ours	Reconstruction

Figure 5.6: Qualitative results for 3D semantic scene reconstruction on unseen image
samples from the SUN360 dataset.

As an example, to show the generalization ability of our model, we apply our method
on unseen data provided by the SUN360 dataset [118], where no ground truth depth
or point clouds are available. As shown in Figure 5.6, although the SUN360 dataset
has completely different indoor configurations, our approach still obtains plausible 3D
reconstruction results.

5.5 Conclusion

In this chapter we propose a pipeline to reconstruct the 3D indoor semantic scene point
cloud from a single panorama image. The proposed pipeline joint learns to predict
the 3D scene layout, complete the object shapes and reconstruct the full scene point
cloud. By estimating the layout depth map, the method recovers the parameterized 3D
scene layout. To generate the full object point cloud, the method completes the noisy
partial point cloud via global feature vector mapping. The full pipeline is joint training
end-to-end to ensure the consistency between the reconstructed scene point cloud and
the panorama input. Experimental results demonstrate the the generality and suitability
of the proposed pipeline.
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6
Conclusion

6.1 Summary

This main theme of this thesis is 3D scene understanding from a single image. We
started with utilizing k-d trees to partition point clouds to capture both local and global
structure of the input point clouds, and continued with inferring complete point clouds
from a single image via depth intermediation. Then, we proposed a pipeline to jointly
estimate the depth and 3D layout from a single panorama image, and concluded with
reconstructing the 3D indoor semantic scene from a single panorama image. A brief
summary of each chapter is provided as follows:

Chapter 2: K-d Tree Guided Hierarchical Learning of Point Clouds. We proposed
a neural network that directly consumes point clouds, exploiting both local and global
information of the input point clouds and aggregating features progressively. The
network, named 3DContextNet, utilized the k-d tree structure to partition 3D point
clouds to encapsulate the latent relations between regions. Then the network was
guided by the corresponding k-d tree to learn and aggregate features hierarchically
and progressively. Experiments on challenging benchmarks showed that the proposed
model provided discriminative point set features. For the task of 3D scene semantic
segmentation, our method significantly outperformed the state-of-the-art on the Stanford
Large-Scale 3D Indoor Spaces Dataset (S3DIS).

Chapter 3: Inferring Point Clouds from Single Monocular Images by Depth In-
termediation. We proposed a pipeline to generate 3D point clouds of an object from
a single-view RGB image by depth intermediation. Most previous work predict the
3D point coordinates from single RGB images directly. We decomposed this prob-
lem into depth estimation from single images and point cloud completion from partial
point clouds. Our method sequentially predicted the depth maps from images and
then inferred the complete 3D object point clouds based on the predicted partial point
clouds. We explicitly imposed the camera model geometrical constraint in our pipeline
and enforced the alignment of the generated point clouds and estimated depth maps.
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6. Conclusion

Experimental results for the single image 3D object reconstruction task showed that the
proposed method outperformed existing state-of-the-art methods. Both the qualitative
and quantitative results demonstrated the generality and suitability of our method.

Chapter 4: Joint 3D Layout and Depth Prediction from Single Indoor Panoramas.
We proposed a method which jointly learned layout prediction and depth estimation
from a single indoor panorama image. Previous methods considered layout prediction
and depth estimation from a single panorama image separately. However, these two
tasks are tightly intertwined. Leveraging the layout depth map as an intermediate
representation, our proposed method outperformed existing methods for both panorama
layout prediction and depth estimation. Experiments on the challenging real-world
dataset of Stanford 2D-3D demonstrated that our approach obtained superior perfor-
mance for both the layout prediction tasks (3D IoU: 85.81% v.s. 79.79%) and the depth
estimation (Abs Rel: 0.068 v.s. 0.079).

Chapter 5: 3D Indoor Semantic Scene Reconstruction from Single Panoramas.
We proposed a novel pipeline named Pano2Scene that reconstructed 3D semantic
scene point clouds from a single panorama input image. 3D indoor semantic scene
reconstruction from 2D images is challenging as it requires both scene understanding
and object reconstruction. Compared to perspective images, panoramas provide larger
field of view and carry more scene information. In this chapter, to reconstruct the 3D
indoor semantic scene from a single panorama image, we proposed a pipeline that jointly
learned to predict the 3D scene layout, complete the object shapes and reconstruct the
full scene point cloud. Experiments on the Stanford 2D-3D dataset demonstrated the
generality and suitability of the proposed method.

6.2 Conclusion

In this thesis, we have taken a step toward 3D scene understanding from a single image.
We hope that our investigations can inspire researchers to develop more advanced 3D
scene understanding approaches, in the context of better 3D reconstruction beyond
occlusion and sensor limitation.

In conclusion, we show that a data-driven approach is able to directly produce a
complete 3D recovery from 2D observations. Moreover, we show that by utilizing the
complementary characteristics from depth (e.g., depth intermediation in Chapter 3, and
joint layout and depth estimation in chapter 4 and chapter 5), we are able to obtain more
accurate results for both object-level and scene-level reconstruction from single-view
images.

We believe this thesis is just a beginning of the exciting and fast growing field of
single-view 3D scene understanding.
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[15] T. Cohen, M. Geiger, J. Köhler, and M. Welling. Convolutional networks for spherical
signals. arXiv preprint arXiv:1709.04893, 2017. (Cited on page 49.)

[16] T. S. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling. Gauge equivariant convolutional
networks and the icosahedral cnn. arXiv preprint arXiv:1902.04615, 2019. (Cited on
page 49.)

[17] J. M. Coughlan and A. L. Yuille. Manhattan world: Compass direction from a single image
by bayesian inference. In Proceedings of the seventh IEEE international conference on
computer vision, volume 2, pages 941–947. IEEE, 1999. (Cited on page 4.)

[18] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. arXiv preprint arXiv:1702.04405,
2017. (Cited on page 9.)

[19] S. Dasgupta, K. Fang, K. Chen, and S. Savarese. Delay: Robust spatial layout estimation
for cluttered indoor scenes. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 616–624, 2016. (Cited on page 4.)

[20] L. Del Pero, J. Bowdish, B. Kermgard, E. Hartley, and K. Barnard. Understanding bayesian
rooms using composite 3d object models. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 153–160, 2013. (Cited on page 4.)

[21] E. Delage, H. Lee, and A. Y. Ng. A dynamic bayesian network model for autonomous 3d
reconstruction from a single indoor image. In 2006 IEEE computer society conference on
computer vision and pattern recognition (CVPR’06), volume 2, pages 2418–2428. IEEE,
2006. (Cited on page 4.)

[22] E. Delage, H. Lee, and A. Y. Ng. A dynamic bayesian network model for autonomous 3d
reconstruction from a single indoor image. In 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages 2418–2428. IEEE,
2006. (Cited on pages 50, 65, and 66.)

[23] H. Dhamo, K. Tateno, I. Laina, N. Navab, and F. Tombari. Peeking behind objects: Layered
depth prediction from a single image. Pattern Recognition Letters, 125:333–340, 2019.
(Cited on page 50.)

[24] M. Eder, P. Moulon, and L. Guan. Pano popups: Indoor 3d reconstruction with a plane-
aware network. In 2019 International Conference on 3D Vision (3DV), pages 76–84. IEEE,
2019. (Cited on pages 50, 59, 60, 66, 91, and 96.)

[25] M. Eder, T. Price, T. Vu, A. Bapat, and J.-M. Frahm. Mapped convolutions. arXiv preprint
arXiv:1906.11096, 2019. (Cited on page 49.)

[26] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a
multi-scale deep network. In Advances in neural information processing systems, pages
2366–2374, 2014. (Cited on pages 27, 50, and 66.)

[27] F. Engelmann, T. Kontogianni, A. Hermans, and B. Leibe. Exploring spatial context for 3d
semantic segmentation of point clouds. (Cited on pages 17, 18, and 19.)

[28] H. Fan, H. Su, and L. J. Guibas. A point set generation network for 3d object reconstruction
from a single image. In CVPR, volume 2, page 6, 2017. (Cited on pages 3, 25, 29, 35, 37,
65, and 68.)

78



[29] K. Fu, J. Peng, Q. He, and H. Zhang. Single image 3d object reconstruction based on deep
learning: A review. Multimedia Tools and Applications, 80(1):463–498, 2021. (Cited on
page 1.)

[30] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 1440–1448, 2015. (Cited on page 9.)

[31] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 580–587, 2014. (Cited on page 9.)

[32] G. Gkioxari, J. Malik, and J. Johnson. Mesh r-cnn. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 9785–9795, 2019. (Cited on pages 5,
63, and 66.)

[33] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised monocular depth estimation
with left-right consistency. In CVPR, volume 2, page 7, 2017. (Cited on page 27.)

[34] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry. Atlasnet: A papier-m\ˆ
ach\’e approach to learning 3d surface generation. arXiv preprint arXiv:1802.05384, 2018.
(Cited on pages 25 and 29.)

[35] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry. A papier-mâché approach
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[39] C. Häne, S. Tulsiani, and J. Malik. Hierarchical surface prediction for 3d object recon-
struction. In 2017 International Conference on 3D Vision (3DV), pages 412–420. IEEE,
2017. (Cited on page 25.)

[40] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pages 2961–2969, 2017. (Cited on
pages 67 and 69.)

[41] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016. (Cited on page 10.)

[42] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial layout of cluttered rooms. In
2009 IEEE 12th international conference on computer vision, pages 1849–1856. IEEE,
2009. (Cited on page 4.)

[43] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial layout of cluttered rooms. In
2009 IEEE 12th international conference on computer vision, pages 1849–1856. IEEE,
2009. (Cited on pages 50, 65, and 66.)

79



6. Bibliography

[44] V. Hedau, D. Hoiem, and D. Forsyth. Thinking inside the box: Using appearance models
and context based on room geometry. In European Conference on Computer Vision, pages
224–237. Springer, 2010. (Cited on page 4.)

[45] J. Hu, M. Ozay, Y. Zhang, and T. Okatani. Revisiting single image depth estimation:
Toward higher resolution maps with accurate object boundaries. In 2019 IEEE Winter
Conference on Applications of Computer Vision (WACV), pages 1043–1051. IEEE, 2019.
(Cited on pages 52 and 69.)

[46] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. arXiv preprint
arXiv:1709.01507, 2017. (Cited on page 14.)

[47] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten. Densely connected convolu-
tional networks. arXiv preprint arXiv:1608.06993, 2016. (Cited on page 15.)

[48] S. Huang, S. Qi, Y. Xiao, Y. Zhu, Y. N. Wu, and S.-C. Zhu. Cooperative holistic scene
understanding: Unifying 3d object, layout, and camera pose estimation. In Advances in
Neural Information Processing Systems, pages 207–218, 2018. (Cited on page 66.)

[49] S. Huang, S. Qi, Y. Zhu, Y. Xiao, Y. Xu, and S.-C. Zhu. Holistic 3d scene parsing and
reconstruction from a single rgb image. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 187–203, 2018. (Cited on page 66.)

[50] H. Izadinia, Q. Shan, and S. M. Seitz. Im2cad. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5134–5143, 2017. (Cited on pages 4, 5,
50, 63, 65, and 66.)

[51] C. Jiang, J. Huang, K. Kashinath, P. Marcus, M. Niessner, et al. Spherical cnns on
unstructured grids. arXiv preprint arXiv:1901.02039, 2019. (Cited on page 49.)

[52] L. Jiang, S. Shi, X. Qi, and J. Jia. Gal: Geometric adversarial loss for single-view 3d-object
reconstruction. In European Conference on Computer Vision, pages 820–834. Springer,
Cham, 2018. (Cited on pages 3, 25, 29, 35, 36, 37, 38, and 69.)

[53] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. (Cited on page 55.)

[54] R. Klokov and V. Lempitsky. Escape from cells: Deep kd-networks for the recognition of
3d point cloud models. arXiv preprint arXiv:1704.01222, 2017. (Cited on pages 11, 12,
16, and 22.)

[55] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012. (Cited on page 9.)

[56] Y. Kuznietsov, J. Stückler, and B. Leibe. Semi-supervised deep learning for monocular
depth map prediction. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6647–6655, 2017. (Cited on page 27.)

[57] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab. Deeper depth prediction
with fully convolutional residual networks. In 3D Vision (3DV), 2016 Fourth International
Conference on, pages 239–248. IEEE, 2016. (Cited on pages 27, 39, 50, 59, 66, and 68.)

[58] H.-A. Le, A. S. Baslamisli, T. Mensink, and T. Gevers. Three for one and one for three:
Flow, segmentation, and surface normals. arXiv preprint arXiv:1807.07473, 2018. (Cited
on page 39.)

[59] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

80



document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. (Cited on
page 9.)

[60] C.-Y. Lee, V. Badrinarayanan, T. Malisiewicz, and A. Rabinovich. Roomnet: End-to-end
room layout estimation. In Proceedings of the IEEE International Conference on Computer
Vision, pages 4865–4874, 2017. (Cited on pages 4, 47, 48, 50, 54, 64, and 65.)

[61] D. C. Lee, M. Hebert, and T. Kanade. Geometric reasoning for single image structure
recovery. In 2009 IEEE conference on computer vision and pattern recognition, pages
2136–2143. IEEE, 2009. (Cited on page 4.)

[62] D. C. Lee, M. Hebert, and T. Kanade. Geometric reasoning for single image structure
recovery. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages
2136–2143. IEEE, 2009. (Cited on page 50.)

[63] B. Li, C. Shen, Y. Dai, A. Van Den Hengel, and M. He. Depth and surface normal
estimation from monocular images using regression on deep features and hierarchical crfs.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1119–1127, 2015. (Cited on page 27.)

[64] B. Li, C. Shen, Y. Dai, A. Van Den Hengel, and M. He. Depth and surface normal
estimation from monocular images using regression on deep features and hierarchical crfs.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1119–1127, 2015. (Cited on pages 47 and 50.)

[65] C. Liu, P. Kohli, and Y. Furukawa. Layered scene decomposition via the occlusion-crf. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
165–173, 2016. (Cited on pages 50 and 65.)

[66] C. Liu, A. G. Schwing, K. Kundu, R. Urtasun, and S. Fidler. Rent3d: Floor-plan priors for
monocular layout estimation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3413–3421, 2015. (Cited on page 47.)

[67] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmenta-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3431–3440, 2015. (Cited on page 9.)

[68] A. Mallya and S. Lazebnik. Learning informative edge maps for indoor scene layout
prediction. In Proceedings of the IEEE international conference on computer vision, pages
936–944, 2015. (Cited on pages 4, 47, 50, and 65.)

[69] P. Mandikal, N. Murthy, M. Agarwal, and R. V. Babu. 3d-lmnet: Latent embedding
matching for accurate and diverse 3d point cloud reconstruction from a single image. arXiv
preprint arXiv:1807.07796, 2018. (Cited on page 29.)

[70] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst. Geodesic convolutional neural
networks on riemannian manifolds. In Proceedings of the IEEE international conference
on computer vision workshops, pages 37–45, 2015. (Cited on page 11.)

[71] D. Maturana and S. Scherer. Voxnet: A 3d convolutional neural network for real-time
object recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 922–928. IEEE, 2015. (Cited on page 2.)

[72] D. Maturana and S. Scherer. Voxnet: A 3d convolutional neural network for real-time
object recognition. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pages 922–928. IEEE, 2015. (Cited on pages 9, 10, and 22.)

81



6. Bibliography

[73] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4460–4470, 2019. (Cited on pages 25
and 29.)

[74] B. Micusik and J. Kosecka. Piecewise planar city 3d modeling from street view panoramic
sequences. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages
2906–2912. IEEE, 2009. (Cited on page 47.)

[75] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa. Laplacian mesh optimization. In
Proceedings of the 4th international conference on Computer graphics and interactive
techniques in Australasia and Southeast Asia, pages 381–389. ACM, 2006. (Cited on
page 28.)

[76] A.-D. Nguyen, S. Choi, W. Kim, and S. Lee. Graphx-convolution for point cloud defor-
mation in 2d-to-3d conversion. In Proceedings of the IEEE International Conference on
Computer Vision, pages 8628–8637, 2019. (Cited on pages 25, 29, 35, and 38.)

[77] Y. Nie, X. Han, S. Guo, Y. Zheng, J. Chang, and J. J. Zhang. Total3dunderstanding: Joint
layout, object pose and mesh reconstruction for indoor scenes from a single image. arXiv
preprint arXiv:2002.12212, 2020. (Cited on pages 5, 63, and 66.)

[78] H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation.
In Proceedings of the IEEE International Conference on Computer Vision, pages 1520–
1528, 2015. (Cited on page 9.)

[79] S. Prokudin, C. Lassner, and J. Romero. Efficient learning on point clouds with basis point
sets. In Proceedings of the IEEE International Conference on Computer Vision Workshops,
pages 0–0, 2019. (Cited on pages 28 and 31.)

[80] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. arXiv preprint arXiv:1612.00593, 2016. (Cited on
pages 11, 13, 16, 17, 18, 19, 20, 21, 22, and 28.)

[81] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 652–660, 2017. (Cited on page 2.)

[82] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas. Volumetric and multi-view
cnns for object classification on 3d data. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5648–5656, 2016. (Cited on page 2.)

[83] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas. Volumetric and multi-view
cnns for object classification on 3d data. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5648–5656, 2016. (Cited on pages 9
and 22.)

[84] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in Neural Information Processing Systems, pages
5099–5108, 2017. (Cited on pages 11, 16, 17, 18, 19, 21, 22, and 28.)

[85] S. Ramalingam, J. K. Pillai, A. Jain, and Y. Taguchi. Manhattan junction catalogue for
spatial reasoning of indoor scenes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3065–3072, 2013. (Cited on page 4.)

[86] P. Z. Ramirez, M. Poggi, F. Tosi, S. Mattoccia, and L. Di Stefano. Geometry meets
semantics for semi-supervised monocular depth estimation. In Asian Conference on

82



Computer Vision, pages 298–313. Springer, 2018. (Cited on page 47.)

[87] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. In Advances in neural information processing systems,
pages 91–99, 2015. (Cited on page 9.)

[88] Y. Ren, S. Li, C. Chen, and C.-C. J. Kuo. A coarse-to-fine indoor layout estimation (cfile)
method. In Asian Conference on Computer Vision, pages 36–51. Springer, 2016. (Cited on
pages 4, 50, and 65.)

[89] S. R. Richter and S. Roth. Matryoshka networks: Predicting 3d geometry via nested
shape layers. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1936–1944, 2018. (Cited on pages 25 and 29.)

[90] G. Riegler, A. O. Ulusoy, and A. Geiger. Octnet: Learning deep 3d representations at
high resolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, volume 3, 2017. (Cited on page 10.)

[91] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252, 2015. (Cited on page 9.)

[92] J. L. Schonberger and J.-M. Frahm. Structure-from-motion revisited. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 4104–4113, 2016.
(Cited on page 29.)

[93] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Efficient structured prediction
for 3d indoor scene understanding. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 2815–2822. IEEE, 2012. (Cited on page 4.)

[94] N. Sedaghat, M. Zolfaghari, and T. Brox. Orientation-boosted voxel nets for 3d object
recognition. arXiv preprint arXiv:1604.03351, 2016. (Cited on pages 9 and 10.)

[95] B. Shi, S. Bai, Z. Zhou, and X. Bai. Deeppano: Deep panoramic representation for 3-d
shape recognition. IEEE Signal Processing Letters, 22(12):2339–2343, 2015. (Cited on
pages 9, 11, and 22.)

[96] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014. (Cited on page 31.)

[97] O. Sorkine and D. Cohen-Or. Least-squares meshes. In Shape Modeling Applications,
2004. Proceedings, pages 191–199. IEEE, 2004. (Cited on page 28.)

[98] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-view convolutional neural
networks for 3d shape recognition. In Proceedings of the IEEE international conference
on computer vision, pages 945–953, 2015. (Cited on page 2.)

[99] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-view convolutional neural
networks for 3d shape recognition. In Proceedings of the IEEE international conference
on computer vision, pages 945–953, 2015. (Cited on pages 9, 11, and 22.)

[100] Y.-C. Su and K. Grauman. Learning spherical convolution for fast features from 360
imagery. In Advances in Neural Information Processing Systems, pages 529–539, 2017.
(Cited on page 49.)

[101] C. Sun, C.-W. Hsiao, M. Sun, and H.-T. Chen. Horizonnet: Learning room layout with 1d
representation and pano stretch data augmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1047–1056, 2019. (Cited on pages 4,

83



6. Bibliography

47, 48, 50, 54, 56, 57, 58, 64, 65, 70, 71, 90, 91, and 92.)

[102] X. Sun, J. Wu, X. Zhang, Z. Zhang, C. Zhang, T. Xue, J. B. Tenenbaum, and W. T. Freeman.
Pix3d: Dataset and methods for single-image 3d shape modeling. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2974–2983, 2018.
(Cited on page 40.)

[103] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree generating networks: Efficient
convolutional architectures for high-resolution 3d outputs. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2088–2096, 2017. (Cited on page 25.)

[104] K. Tateno, N. Navab, and F. Tombari. Distortion-aware convolutional filters for dense
prediction in panoramic images. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 707–722, 2018. (Cited on pages 49 and 59.)

[105] L. P. Tchapmi, V. Kosaraju, H. Rezatofighi, I. Reid, and S. Savarese. Topnet: Structural
point cloud decoder. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 383–392, 2019. (Cited on pages 64 and 66.)

[106] D. Thanh Nguyen, B.-S. Hua, K. Tran, Q.-H. Pham, and S.-K. Yeung. A field model for
repairing 3d shapes. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5676–5684, 2016. (Cited on page 28.)

[107] S. Tulsiani, A. A. Efros, and J. Malik. Multi-view consistency as supervisory signal for
learning shape and pose prediction. Computer Vision and Pattern Regognition (CVPR),
2018. (Cited on page 29.)

[108] S. Tulsiani, S. Gupta, D. F. Fouhey, A. A. Efros, and J. Malik. Factoring shape, pose,
and layout from the 2d image of a 3d scene. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 302–310, 2018. (Cited on
pages 5, 63, and 66.)

[109] S. Tulsiani, R. Tucker, and N. Snavely. Layer-structured 3d scene inference via view
synthesis. In Proceedings of the European Conference on Computer Vision (ECCV), pages
302–317, 2018. (Cited on page 50.)

[110] R. G. Von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall. Lsd: A fast line segment
detector with a false detection control. IEEE transactions on pattern analysis and machine
intelligence, 32(4):722–732, 2008. (Cited on page 51.)

[111] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang. Pixel2mesh: Generating 3d
mesh models from single rgb images. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 52–67, 2018. (Cited on pages 25, 29, 35, and 37.)

[112] X. Wang, D. Fouhey, and A. Gupta. Designing deep networks for surface normal estimation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 539–547, 2015. (Cited on pages 27, 50, and 66.)

[113] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. 2017. (Cited on
page 14.)

[114] J. Wu, Y. Wang, T. Xue, X. Sun, B. Freeman, and J. Tenenbaum. Marrnet: 3d shape
reconstruction via 2.5 d sketches. In Advances in neural information processing systems,
pages 540–550, 2017. (Cited on page 29.)

[115] Z. Wu, R. Shou, Y. Wang, and X. Liu. Interactive shape co-segmentation via label
propagation. Computers & Graphics, 38:248–254, 2014. (Cited on pages 21 and 22.)

84



[116] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A deep
representation for volumetric shapes. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1912–1920, 2015. (Cited on pages 2 and 28.)

[117] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3d shapenets: A deep
representation for volumetric shapes. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1912–1920, 2015. (Cited on pages 9, 10, 17, 20,
and 22.)

[118] J. Xiao, K. A. Ehinger, A. Oliva, and A. Torralba. Recognizing scene viewpoint using
panoramic place representation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2695–2702. IEEE, 2012. (Cited on page 74.)

[119] J. Xu, B. Stenger, T. Kerola, and T. Tung. Pano2cad: Room layout from a single panorama
image. In 2017 IEEE Winter Conference on Applications of Computer Vision (WACV),
pages 354–362. IEEE, 2017. (Cited on page 4.)

[120] B. Yang, H. Wen, S. Wang, R. Clark, A. Markham, and N. Trigoni. 3d object reconstruction
from a single depth view with adversarial learning. arXiv preprint arXiv:1708.07969,
2017. (Cited on pages 3, 25, and 29.)

[121] H. Yang and H. Zhang. Efficient 3d room shape recovery from a single panorama. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
5422–5430, 2016. (Cited on pages 4, 50, and 65.)

[122] S.-T. Yang, F.-E. Wang, C.-H. Peng, P. Wonka, M. Sun, and H.-K. Chu. Dula-net: A
dual-projection network for estimating room layouts from a single rgb panorama. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3363–3372, 2019. (Cited on pages 4, 47, 50, 54, 56, 65, 70, 71, and 92.)

[123] Y. Yang, C. Feng, Y. Shen, and D. Tian. Foldingnet: Point cloud auto-encoder via deep grid
deformation. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
volume 3, 2018. (Cited on pages 28, 31, 64, 65, 68, 71, and 72.)

[124] Y. Yang, S. Jin, R. Liu, S. Bing Kang, and J. Yu. Automatic 3d indoor scene modeling
from single panorama. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3926–3934, 2018. (Cited on pages 50 and 65.)

[125] L. Yi, V. G. Kim, D. Ceylan, I. Shen, M. Yan, H. Su, A. Lu, Q. Huang, A. Sheffer,
L. Guibas, et al. A scalable active framework for region annotation in 3d shape collections.
ACM Transactions on Graphics (TOG), 35(6):210, 2016. (Cited on pages 21 and 22.)

[126] L. Yi, H. Su, X. Guo, and L. Guibas. Syncspeccnn: Synchronized spectral cnn for 3d
shape segmentation. In Computer Vision and Pattern Recognition (CVPR), 2017. (Cited
on pages 21 and 22.)

[127] W. Yin, Y. Liu, C. Shen, and Y. Yan. Enforcing geometric constraints of virtual normal
for depth prediction. In Proceedings of the IEEE International Conference on Computer
Vision, pages 5684–5693, 2019. (Cited on page 53.)

[128] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert. Pcn: Point completion network. In
2018 International Conference on 3D Vision (3DV), pages 728–737. IEEE, 2018. (Cited
on pages 28, 31, 43, 64, 65, 68, 71, and 72.)

[129] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A. Smola. Deep
sets. 2017. (Cited on page 13.)

85



6. Bibliography

[130] W. Zeng and T. Gevers. 3dcontextnet: Kd tree guided hierarchical learning of point clouds
using local contextual cues. arXiv preprint arXiv:1711.11379, 2017. (Cited on page 28.)

[131] W. Zeng, S. Karaoglu, and T. Gevers. Inferring point clouds from single monocular images
by depth intermediation. arXiv preprint arXiv:1812.01402, 2018. (Cited on page 66.)

[132] J. Zhang, C. Kan, A. G. Schwing, and R. Urtasun. Estimating the 3d layout of indoor scenes
and its clutter from depth sensors. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1273–1280, 2013. (Cited on pages 50 and 65.)

[133] X. Zhang, Z. Zhang, B. Freeman, and J. Wu. Learning to reconstruct shapes from unseen
classes. In NeurIPS, 2018. (Cited on pages 33, 35, and 37.)

[134] Y. Zhang, S. Song, P. Tan, and J. Xiao. Panocontext: A whole-room 3d context model
for panoramic scene understanding. In European conference on computer vision, pages
668–686. Springer, 2014. (Cited on page 4.)

[135] Y. Zhang, S. Song, P. Tan, and J. Xiao. Panocontext: A whole-room 3d context model
for panoramic scene understanding. In European conference on computer vision, pages
668–686. Springer, 2014. (Cited on pages 50, 51, 55, 57, and 65.)

[136] Y. Zhao and S.-C. Zhu. Scene parsing by integrating function, geometry and appearance
models. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3119–3126, 2013. (Cited on page 4.)

[137] N. Zioulis, A. Karakottas, D. Zarpalas, and P. Daras. Omnidepth: Dense depth estimation
for indoors spherical panoramas. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 448–465, 2018. (Cited on pages 50, 52, 59, 60, 66, 87, 91, and 96.)

[138] C. Zou, A. Colburn, Q. Shan, and D. Hoiem. Layoutnet: Reconstructing the 3d room
layout from a single rgb image. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2051–2059, 2018. (Cited on page 4.)

[139] C. Zou, A. Colburn, Q. Shan, and D. Hoiem. Layoutnet: Reconstructing the 3d room
layout from a single rgb image. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2051–2059, 2018. (Cited on pages 47, 48, 50, 51,
54, 55, 56, 57, 64, 65, 70, 71, 91, 92, and 93.)

[140] C. Zou, R. Guo, Z. Li, and D. Hoiem. Complete 3d scene parsing from an rgbd image.
International Journal of Computer Vision, 127(2):143–162, 2019. (Cited on pages 50
and 65.)

86



Appendix

In this appendix, we provide more details and experimental results for our work ”Joint
3D Layout and Depth Prediction from a Single Panorama” which is detailed in Chapter
4.

Network Architecture Details

The detailed network architectures for the coarse depth estimation and semantic seg-
mentation are shown in Table 6.1. The encoder is based on the ResNet-18 architecture
with modified input blocks [137]. The rectangle filters in the input blocks are connected
in parallel and resolutions vary to account for different distortion levels. The encoder is
shared for both the coarse depth estimation and semantic segmentation. The decoders
restore the original input resolution by means of up-sampling operators followed by
3× 3 convolutions. Skip connections are also added to link to the corresponding resolu-
tion in the encoder. The two decoders do not share weights. The network architecture
for the layout depth estimation is similar to this architecture however without input
blocks and only one decoder with respect to the layout depth estimation.

The detailed network architecture for the depth refinement is shown in Table 6.2. The
first part is the semantic-guided depth fusion network. The input is the concatenation
of the coarse depth prediction, estimated layout depth and semantic segmentation and
the output is the semantic-guided attention map. This attention map maximizes the
exploitation of the coarse depth and layout depth. Then, the depth refinement module
takes the fused depth as input to predict the final refined depth. The encoder-decoder
architecture is similar to the previous depth estimation network.

Layout Depth Generation

Here we describe how to generate the layout depth map from the original corner labeling
for supervised learning. The 3D layout can be recovered by fitting planar surfaces to
the corner positions. As shown in Fig. 6.1, we assume the dimensions of the panorama
image isW×H . Since the panorama image covers 360 degree field of view horizontally
and 180 degree field of view vertically, so W = 2H , and the focal length is W/2π,
which is also the radius of the cylinder: R = W/2π. From Fig. 6.1, it can be derived
that for a 3D point (x, y, z):

α = arctan(
x

z
) (6.1)
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6. Appendix

Table 6.1: Details of the network architecture for the coarse depth estimation and se-
mantic segmentation. The encoder uses modified input blocks in front of the ResNet-18
architecture to reduce the distortion effect. The network for the layout depth estimation
is similar to this architecture with slight modifications.

name layer kernel size output feature map size

Input Block 1

conv 5x11x8 512x1024x8
conv 3x9x8 512x1024x8
conv 5x7x8 512x1024x8
conv 7x7x8 512x1024x8

concat 512x1024x32

Input Block 2

conv 3x9x16 512x1024x16
conv 3x7x16 512x1024x16
conv 3x5x16 512x1024x16
conv 5x5x16 512x1024x16

concat 512x1024x64

Conv1 conv 3x3x64 }x2 256x512x643x3x64

Conv2 conv 3x3x128 }x2 128x256x1283x3x128

Conv3 conv 3x3x256 }x2 64x128x2563x3x256

Conv4 conv 3x3x512 }x2 32x64x5123x3x512
up-sampling 64x128x512

De-conv4 Sem conv 3x3x256 64x128x256
up-sampling 128x256x256

De-conv3 Sem conv 3x3x128 128x256x128
up-sampling 256x512x128

De-conv2 Sem conv 3x3x64 256x512x64
up-sampling 512x1024x64

De-conv1 Sem conv 3x3x64 512x1024x64
De-conv0 Sem conv 3x3x13 512x1024x13

De-conv4 Dep conv 3x3x256 64x128x256
up-sampling 128x256x256

De-conv3 Dep conv 3x3x128 128x256x128
up-sampling 256x512x128

De-conv2 Dep conv 3x3x64 256x512x64
up-sampling 512x1024x64

De-conv1 Dep conv 3x3x64 512x1024x64
De-conv0 Dep conv 3x3x1 512x1024x1

v =
√
x2 + z2 (6.2)

x′ = Rα = R · arctan(
x

z
) (6.3)
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Table 6.2: Details of the network architecture for the depth refinement. The first part
is the semantic-guided depth fusion network which outputs the attention map to fuse
the previous depth maps. The following encoder-decoder architecture is similar to the
previous depth estimation network.

name layer kernel size output feature map size
concat 512x1024x15

Conv1 Sem guided conv 3x3x32 256x512x32
Conv2 Sem guided conv 3x3x64 128x256x64
Conv3 Sem guided conv 3x3x128 64x128x128
Conv4 Sem guided conv 3x3x256 32x64x256

up-sampling 64x128x256
De-conv3 Sem guided conv 3x3x128 64x128x128

up-sampling 128x256x128
De-conv2 Sem guided conv 3x3x64 256x512x64

up-sampling 512x1024x64
De-conv1 Sem guided conv 3x3x1 512x1024x1

fusion 512x1024x1

Conv1 conv 3x3x64 }x2 256x512x643x3x64

Conv2 conv 3x3x128 }x2 128x256x1283x3x128

Conv3 conv 3x3x256 }x2 64x128x2563x3x256

Conv4 conv 3x3x512 }x2 32x64x5123x3x512
up-sampling 64x128x512

De-conv4 Dep refine conv 3x3x256 64x128x256
up-sampling 128x256x256

De-conv3 Dep refine conv 3x3x128 128x256x128
up-sampling 256x512x128

De-conv2 Dep refine conv 3x3x64 256x512x64
up-sampling 512x1024x64

De-conv1 Dep refine conv 3x3x64 512x1024x64
De-conv0 Dep refine conv 3x3x1 512x1024x1

y′ = R · arctan(
y√

x2 + z2
) (6.4)

d′ =
√
x2 + y2 + z2 (6.5)

where x′ and y′ are the reprojected coordinates on the panorama. d′ is the corresponding
depth value. Fig. 6.2 shows additional results for the layout depth map.
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6. Appendix

Figure 6.1: Geometry derivation for equirectangular reprojecting layout depth map from
3D layout points.

Figure 6.2: Additional results of the layout depth map. From left to right: the panorama
input image, the original layout corner map and the corresponding layout depth map.
The first three rows are images from the Stanford 2D-3D dataset and the last three rows
are from the non-cuboid rooms of the PanoContext dataset labeled by [101].
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Additional Qualitative Results for Layout Prediction

Additional qualitative results for layout prediction are shown in Fig. 6.3. The first four
rows demonstrate the results of the baseline LayoutNet [139] and our proposed method
on the Stanford 2D-3D dataset. The last four rows are computed for the PanoContext
dataset. For each example, we show the predicted layout (LayoutNet: blue, our proposed
method: green) and the ground truth (orange) under equirectangular view. By explicitly
incorporating the layout depth map, the proposed method can locate the corners more
precisely (avoiding locations in the middle of the wall which has continuous depth,
e.g. the third, fourth and eighth examples for the Stanford 2D-3D and the third, sixth
and eighth examples for the PanoContext). Constrained by the layout depth map, the
proposed method is also able to handle occluded corners (e.g. the second, fourth and
sixth examples for the Stanford 2D-3D and the fifth example for the PanoContext).
Thus, it can be derived that for both the Stanford 2D-3D and PanoContext dataset, the
proposed method obtains better performance for layout prediction.

Additional qualitative results for non-cuboid room layout prediction are shown in
Fig. 6.4 and Fig. 6.5. To verify the generalization ability of our proposed method to
non-cuboid layout, we fine-tune our model on the non-cuboid rooms labeled by [101].
It can be shown that the proposed method is able to handle non-cuboid layout rooms.

Additional Qualitative Results for Depth Estimation

Additional qualitative results for depth estimation are shown in Fig. 6.6. The baseline
RectNet [137], state-of-the-art Plane-aware network [24] and our proposed method are
compared. Additional 3D reconstruction comparison of the depth estimation are shown
in Fig. 6.7 and Fig. 6.8. In Fig. 6.7, the panorama input splits the window into two
parts, the leftmost and rightmost part of the panorama. Without any constraint, the
RectNet [137] estimates the discontinuous depth for the window, resulting to disjointed
3D reconstruction, as circled by the red dash ellipses. Constrained by the layout depth
map, our proposed method correctly estimates the continuous depth for the window.
Explicitly inter-positioning the layout depth, the 3D reconstruction of the proposed
method also obtains more planar ceiling and walls. In Fig. 6.8, similar disjointed
3D reconstruction is shown for the whiteboard of RectNet, but our 3D reconstruction
can overcome this issue and preserve more planarity. Additional internal qualitative
comparison between the coarse depth estimation and the final refined depth are shown
in Fig. 6.9, which provides more insights about the depth refinement. The depth map
below the coarse depth map is the estimated layout depth map which we use to refine
the depth estimation. For the first example, the depth of the window region is incorrect
for the coarse depth estimation. Combined with the layout depth map, the refined depth
map correctly estimates the depth for the ambiguous window region. For the second
example, the depth of the right bookcases are too difficult to estimate for the coarse
depth estimation. Constrained by the layout depth map, the proposed method obtains
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proper depth estimation.

Timing Statistics

Table 6.3 summarizes the time comparison for a single forward pass of the network and
the post optimization step between LayoutNet [139], DuLa-Net [122], HorizonNet [101]
and our proposed method. Note that the computation time of our proposed method
is with the depth refinement module. Optimization directly in 3D space makes our
proposed method more efficient. Our proposed method is the fastest for both the network
prediction and the optimization step.

Table 6.3: Time consumption comparison for a single forward pass of the neural network
and the optimization step between different methods.

Method Optimization avg. CPU Time(ms) Network avg. GPU Time(ms)
LayoutNet [139] 1583 39
DuLa-Net [122] 22 35

HorizonNet [101] 18 58
Ours 15 32
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Figure 6.3: Additional qualitative results on layout prediction. Results are shown of
testing the baseline LayoutNet [139] and our proposed method on the Stanford 2D-3D
dataset (top four rows) and PanoContext dataset (bottom four rows). For each example,
we show the predicted layout (LayoutNet: blue, the proposed method: green) and the
ground truth (orange) under equirectangular view.
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Panorama	Input Recovered	3D	Room	Layout

Figure 6.4: Additional qualitative results for non-cuboid room layout prediction. It can
be derived that the proposed method can also handle non-cuboid layout rooms.
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Panorama	Input Recovered	3D	Room	Layout /

Figure 6.5: Additional qualitative results for non-cuboid room layout prediction. It can
be derived that the proposed method can also handle non-cuboid layout rooms.

95



6. Appendix

Figure 6.6: Additional qualitative results on depth estimation. Results are shown for
experiments of testing the estimated layout depth map, the baseline RectNet [137],
Plane-aware network [24] and our proposed method on the Stanford 2D-3D dataset.

Figure 6.7: Additional 3D reconstruction comparison. Due to the explicitly inter-
positioning of the layout depth, the proposed method predicts a relatively good depth
map for the distant regions. So the 3D reconstruction of the proposed method is more
proper and provides more planar ceiling and walls.
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Figure 6.8: Additional 3D reconstruction comparison. The proposed method preserves
more accurate scale of the room and the wall planes are more consistent.

Figure 6.9: Additional internal qualitative comparison between the coarse depth esti-
mation and the final refined depth. Constrained by the layout depth map, the proposed
method refines better depth estimation based on the coarse depth estimation.
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Samenvatting

Overzicht

Dit proefschrift is gewijd aan het verkrijgen van begrip van 3D-scènes uit een enkele
afbeelding. De thesis is opgebouwd als volgt: We beginnen met het gebruik van k-d
bomen om puntenwolken op te delen om zowel de lokale als de globale structuur van de
puntenwolken vast te leggen. Hierna leiden we volledige puntenwolken af uit een enkel
beeld met als tussenstap het voorspellen van dieptebeelden. Vervolgens stellen we een
pijplijn voor om tegelijkertijd de diepte en de 3D-indeling van een enkel panoramabeeld
te schatten. We eindigen met het reconstrueren van de 3D-semantische scène op basis
van een enkel panoramabeeld specifiek voor scènes die binnenshuis zijn geschoten.
Hieronder wordt een samenvatting gegeven van elk hoofdstuk.

Hoofdstuk 2: Hiërarchisch leren van puntenwolken met behulp van k-d bomen.
Een neuraal netwerk wordt voorgesteld dat als input puntenwolken krijgt, en waarbij
zowel lokale als globale informatie van de puntenwolken wordt benut. De relevante
kenmerken worden geleidelijk geaggregeerd. Het netwerk, genaamd 3DContextNet,
gebruikt de k-d-boomstructuur om 3D-puntenwolken te verdelen en de latente relaties
tussen regio’s in te delen. Vervolgens wordt het netwerk geleid door de correspon-
derende k-d-boom om kenmerken hiërarchisch en progressief te leren en samen te voe-
gen. Experimenten op uitdagende benchmarks datasets tonen aan dat het voorgestelde
model in staat is onderscheidende kenmerken van de puntensets voor te stellen. Voor
semantische segmentatie van 3D-scènes presteert onze methode aanzienlijk beter dan
de state-of-the-art op de Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS).

Hoofdstuk 3: Puntenwolken afleiden uit enkelvoudige monoculaire beelden door
diepte bemiddeling. We stellen een pijplijn voor om 3D-puntenwolken van een ob-
ject te genereren uit een RGB-afbeelding met één weergave door middel van diepte
begeleiding. De diepte begeleiding is een extra tussenstap. Methodes uit de literatuur
voorspellen vaak de coördinaten van 3D-objecten direct uit RGB-afbeeldingen. We
verdelen dit probleem onder in diepte schatting van monoculaire afbeeldingen en het
aanvullen van gedeeltelijke puntenwolken. Onze methode voorspelt opeenvolgend de
dieptebeelden op basis van monoculaire afbeeldingen en leidt vervolgens de volledige
3D-puntenwolken af op basis van de voorspelde gedeeltelijke puntenwolken. We leggen
expliciet de geometrische beperking van het cameramodel op aan het model en dwin-
gen de uitlijning van de gegenereerde puntenwolken en geschatte dieptekaarten af.
Experimentele resultaten op het reconstrueren van een 3D-object uit een enkel beeld,
laten zien dat de voorgestelde methode beter presteert dan de bestaande methoden.
Zowel de kwalitatieve als de kwantitatieve resultaten tonen de generaliseerbaarheid en
geschiktheid van onze methode aan.

Hoofdstuk 4: Gezamenlijke voorspelling van 3D-indeling en diepte voorspelling
van enkele binnenpanorama’s. We stellen een methode voor die gezamenlijk indeling
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voorspelling en diepte schatting leert uit een enkel panoramabeeld specifiek voor scènes
die binnenshuis zijn geschoten. Methodes uit de literatuur bekijken indeling voorspelling
en diepte schatting van een enkel panoramabeeld afzonderlijk. Echter zijn deze twee
taken nauw met elkaar verweven. Door gebruik te maken van het dieptebeeld van de
3D-indeling als een tussenliggende weergave, presteert onze voorgestelde methode beter
dan bestaande methoden voor zowel voorspelling van panorama indeling als diepte
schatting. Experimenten met de uitdagende dataset van Stanford 2D-3D met plaatjes uit
een echte omgeving tonen aan dat onze aanpak superieure prestaties levert voor zowel
de 3D-indeling voorspellingstaken (3D IoU: 85.81% vs. 79.79%) als de diepte schatting
(Abs Rel: 0.068 vs. 0.079).

Hoofdstuk 5: 3D-reconstructie van semantische scènes uit afzonderlijke panorama’s.
We stellen een nieuwe pijplijn voor met de naam Pano2Scene, die 3D-puntenwolken
van semantische scènes reconstrueert vanuit een enkel panoramabeeld specifiek op
scènes binnenshuis. 3D-reconstructie van semantische scènes op basis van 2D-beelden
is uitdagend, omdat zowel begrip van de scène als reconstructie van objecten vereist is.
In vergelijking met perspectief beelden bieden panorama’s een groter gezichtsveld en
meer scène-informatie. Om de 3D-semantische scène binnenshuis te reconstrueren uit
een enkel panoramabeeld, stellen we een pijplijn voor die samen leert om de indeling
van de 3D-scène te voorspellen, de objectvormen te voltooien en de puntenwolk van de
volledige scène te reconstrueren. Experimenten met de Stanford 2D-3D-dataset tonen
de generaliseerbaarheid en geschiktheid van de voorgestelde methode aan.

Conclusie

In dit proefschrift hebben we een stap gezet in het begrijpen van 3D-scènes vanuit
een monoculair beeld. We hopen dat ons onderzoek onderzoekers kan inspireren om
meer geavanceerde benaderingen voor het begrijpen van 3D-scènes te ontwikkelen.
Helemaal voor een betere 3D-reconstructie die verder gaat dan occlusie en beperkte
sensor informatie.

We de hypothese gesteld dat een data-gedreven benadering in staat is om rechtstreeks
een volledig 3D-reconstructie uit 2D-waarnemingen te produceren Dit wordt bewezen
in onze experimenten. Bovendien laten we zien dat door gebruik te maken van de
complementaire kenmerken van diepte (bijv. diepte bemiddeling in hoofdstuk 3, en
gezamenlijke 3D-indeling en diepte schatting in hoofdstuk 4 en hoofdstuk 5), we in
staat zijn om zowel voorspellingen op objectniveau als scène niveau nauwkeuriger te
maken.

Wij geloven dat dit proefschrift slechts het begin is van het opwindende en snelgroeiende
gebied van het begrijpen van 3D-scènes met één weergave.
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