50 research outputs found

    Impossibility on the Schnorr Signature from the One-more DL Assumption in the Non-programmable Random Oracle Model

    Get PDF
    In the random oracle model (ROM), it is provable from the DL assumption, whereas there is negative circumstantial evidence in the standard model. Fleischhacker, Jager, and Schröder showed that the tight security of the Schnorr signature is unprovable from a strong cryptographic assumption, such as the One-More DL (OM-DL) assumption and the computational and decisional Diffie-Hellman assumption, in the ROM via a generic reduction as long as the underlying cryptographic assumption holds. However, it remains open whether or not the impossibility of the provable security of the Schnorr signature from a strong assumption via a non-tight and reasonable reduction. In this paper, we show that the security of the Schnorr signature is unprovable from the OM-DL assumption in the non-programmable ROM as long as the OM-DL assumption holds. Our impossibility result is proven via a non-tight Turing reduction

    Limitations of the Meta-reduction Technique: The Case of Schnorr Signatures

    Get PDF
    We revisit the security of Fiat-Shamir signatures in the non-programmable random oracle model. The well-known proof by Pointcheval and Stern for such signature schemes (Journal of Cryptology, 2000) relies on the ability to re-program the random oracle, and it has been unknown if this property is inherent. Pailler and Vergnaud (Asiacrypt 2005) gave some first evidence of the hardness by showing via meta-reduction techniques that algebraic reductions cannot succeed in reducing key-only attacks against unforgeability to the discrete-log assumptions. We also use meta-reductions to show that the security of Schnorr signatures cannot be proven equivalent to the discrete logarithm problem without programming the random oracle. Our result also holds under the one-more discrete logarithm assumption but applies to a large class of reductions, we call *single-instance* reductions, subsuming those used in previous proofs of security in the (programmable) random oracle model. In contrast to algebraic reductions, our class allows arbitrary operations, but can only invoke a single resettable adversary instance, making our class incomparable to algebraic reductions. Our main result, however, is about meta-reductions and the question if this technique can be used to further strengthen the separations above. Our answer is negative. We present, to the best of our knowledge for the first time, limitations of the meta-reduction technique in the sense that finding a meta-reduction for general reductions is most likely infeasible. In fact, we prove that finding a meta-reduction against a potential reduction is equivalent to finding a ``meta-meta-reduction\u27\u27 against the strong existential unforgeability of the signature scheme. This means that the existence of a meta-reduction implies that the scheme must be insecure (against a slightly stronger attack) in the first place

    Optimal Security Proofs for Signatures from Identification Schemes

    Get PDF
    We perform a concrete security treatment of digital signature schemes obtained from canonical identification schemes via the Fiat-Shamir transform. If the identification scheme is rerandomizable and satisfies the weakest possible security notion (key-recoverability), then the implied signature scheme is unforgeability against chosen-message attacks in the multi-user setting in the random oracle model. The reduction loses a factor of roughly Qh, the number of hash queries. Previous security reductions incorporated an additional multiplicative loss of N, the number of users in the system. As an important application of our framework, we obtain a concrete security treatment for Schnorr signatures. Our analysis is done in small steps via intermediate security notions, and all our implications have relatively simple proofs. Furthermore, for each step we show the optimality of the given reduction via a meta-reduction

    A Pairing-Free Signature Scheme from Correlation Intractable Hash Function and Strong Diffie-Hellman Assumption

    Get PDF
    Goh and Jarecki (Eurocrypt 2003) showed how to get a signature scheme from the computational Diffie-Hellman assumption, and they introduced the name EDL for signatures of this type. The corresponding EDL family of signature schemes is remarkable for several reasons: elegance, simplicity and tight security. However, EDL security proofs stand in the random oracle model, and, to the best of our knowledge, extending this family without using an idealization of hash functions has never been successful. In this paper, we propose a new signature scheme belonging to the EDL family, which is simple, natural and efficient, without using the random oracle model. Our scheme is based on the very same assumption than the Boneh-Boyen scheme, namely the strong Diffie-Hellman assumption, with the precision that our groups are not bound to being bilinear. We also make use of a correlation-intractable hash function, for a particular relation related to discrete-logarithm. In addition to the theoretical interest of extending the EDL family with- out the random oracle model, our scheme is also one of the very few schemes which achieve discrete-log security properties without relying on pairings

    On Removing Rejection Conditions in Practical Lattice-Based Signatures

    Get PDF
    Digital signatures following the methodology of “Fiat-Shamir with Aborts”, proposed by Lyubashevsky, are capable of achieving the smallest public-key and signature sizes among all the existing lattice signature schemes based on the hardness of the Ring-SIS and Ring-LWE problems. Since its introduction, several variants and optimizations have been proposed, and two of them (i.e., Dilithium and qTESLA) entered the second round of the NIST post-quantum cryptography standardization. This method of designing signatures relies on rejection sampling during the signing process. Rejection sampling is crucial for ensuring both the correctness and security of these signature schemes. In this paper, we investigate the possibility of removing the two rejection conditions used both in Dilithium and qTESLA. First, we show that removing one of the rejection conditions is possible, and provide a variant of Lyubashevsky’s signature with comparable parameters with Dilithium and qTESLA. Second, we give evidence on the difficulty of removing the other rejection condition, by showing that two very general approaches do not yield a signature scheme with correctness or security

    On the Non-malleability of the Fiat-Shamir Transform

    Get PDF
    The Fiat-Shamir transform is a well studied paradigm for removing interaction from public-coin protocols. We investigate whether the resulting non-interactive zero-knowledge (NIZK) proof systems also exhibit non-malleability properties that have up to now only been studied for NIZK proof systems in the common reference string model: first, we formally define simulation soundness and a weak form of simulation extraction in the random oracle model (ROM). Second, we show that in the ROM the Fiat-Shamir transform meets these properties under lenient conditions. A consequence of our result is that, in the ROM, we obtain truly efficient non malleable NIZK proof systems essentially for free. Our definitions are sufficient for instantiating the Naor-Yung paradigm for CCA2-secure encryption, as well as a generic construction for signature schemes from hard relations and simulation-extractable NIZK proof systems. These two constructions are interesting as the former preserves both the leakage resilience and key-dependent message security of the underlying CPA-secure encryption scheme, while the latter lifts the leakage resilience of the hard relation to the leakage resilience of the resulting signature scheme

    Augmented Random Oracles

    Get PDF
    We propose a new paradigm for justifying the security of random oracle-based protocols, which we call the Augmented Random Oracle Model (AROM). We show that the AROM captures a wide range of important random oracle impossibility results. Thus a proof in the AROM implies some resiliency to such impossibilities. We then consider three ROM transforms which are subject to impossibilities: Fiat-Shamir (FS), Fujisaki-Okamoto (FO), and Encrypt-with-Hash (EwH). We show in each case how to obtain security in the AROM by strengthening the building blocks or modifying the transform. Along the way, we give a couple other results. We improve the assumptions needed for the FO and EwH impossibilities from indistinguishability obfuscation to circularly secure LWE; we argue that our AROM still captures this improved impossibility. We also demonstrate that there is no best possible hash function, by giving a pair of security properties, both of which can be instantiated in the standard model separately, which cannot be simultaneously satisfied by a single hash function

    Efficient Unlinkable Sanitizable Signatures from Signatures with Re-Randomizable Keys

    Get PDF
    In a sanitizable signature scheme the signer allows a designated third party, called the sanitizer, to modify certain parts of the message and adapt the signature accordingly. Ateniese et al. (ESORICS 2005) introduced this primitive and proposed five security properties which were formalized by Brzuska et al.~(PKC 2009). Subsequently, Brzuska et al. (PKC 2010) suggested an additional security notion, called unlinkability which says that one cannot link sanitized message-signature pairs of the same document. Moreover, the authors gave a generic construction based on group signatures that have a certain structure. However, the special structure required from the group signature scheme only allows for inefficient instantiations. Here, we present the first efficient instantiation of unlinkable sanitizable signatures. Our construction is based on a novel type of signature schemes with re-randomizable keys. Intuitively, this property allows to re-randomize both the signing and the verification key separately but consistently. This allows us to sign the message with a re-randomized key and to prove in zero-knowledge that the derived key originates from either the signer or the sanitizer. We instantiate this generic idea with Schnorr signatures and efficient ÎŁ\Sigma-protocols, which we convert into non-interactive zero-knowledge proofs via the Fiat-Shamir transformation. Our construction is at least one order of magnitude faster than instantiating the generic scheme of Brzuska et al. with the most efficient group signature schemes

    Cryptographic Tools for Privacy Preservation

    Get PDF
    Data permeates every aspect of our daily life and it is the backbone of our digitalized society. Smartphones, smartwatches and many more smart devices measure, collect, modify and share data in what is known as the Internet of Things.Often, these devices don’t have enough computation power/storage space thus out-sourcing some aspects of the data management to the Cloud. Outsourcing computation/storage to a third party poses natural questions regarding the security and privacy of the shared sensitive data.Intuitively, Cryptography is a toolset of primitives/protocols of which security prop- erties are formally proven while Privacy typically captures additional social/legislative requirements that relate more to the concept of “trust” between people, “how” data is used and/or “who” has access to data. This thesis separates the concepts by introducing an abstract model that classifies data leaks into different types of breaches. Each class represents a specific requirement/goal related to cryptography, e.g. confidentiality or integrity, or related to privacy, e.g. liability, sensitive data management and more.The thesis contains cryptographic tools designed to provide privacy guarantees for different application scenarios. In more details, the thesis:(a) defines new encryption schemes that provide formal privacy guarantees such as theoretical privacy definitions like Differential Privacy (DP), or concrete privacy-oriented applications covered by existing regulations such as the European General Data Protection Regulation (GDPR);(b) proposes new tools and procedures for providing verifiable computation’s guarantees in concrete scenarios for post-quantum cryptography or generalisation of signature schemes;(c) proposes a methodology for utilising Machine Learning (ML) for analysing the effective security and privacy of a crypto-tool and, dually, proposes a secure primitive that allows computing specific ML algorithm in a privacy-preserving way;(d) provides an alternative protocol for secure communication between two parties, based on the idea of communicating in a periodically timed fashion
    corecore