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Abstract. We revisit the security of Fiat-Shamir signatures in the non-programmable random oracle
model. The well-known proof by Pointcheval and Stern for such signature schemes (Journal of Cryptology,
2000) relies on the ability to re-program the random oracle, and it has been unknown if this property is
inherent. Pailler and Vergnaud (Asiacrypt 2005) gave some first evidence of the hardness by showing via
meta-reduction techniques that algebraic reductions cannot succeed in reducing key-only attacks against
unforgeability to the discrete-log assumptions. We also use meta-reductions to show that the security of
Schnorr signatures cannot be proven equivalent to the discrete logarithm problem without programming
the random oracle. Our result also holds under the one-more discrete logarithm assumption but applies
to a large class of reductions, we call single-instance reductions, subsuming those used in previous proofs
of security in the (programmable) random oracle model. In contrast to algebraic reductions, our class
allows arbitrary operations, but can only invoke a single resettable adversary instance, making our class
incomparable to algebraic reductions.

Our main result, however, is about meta-reductions and the question if this technique can be used
to further strengthen the separations above. Our answer is negative. We present, to the best of our
knowledge for the first time, limitations of the meta-reduction technique in the sense that finding a
meta-reduction for general reductions is most likely infeasible. In fact, we prove that finding a meta-
reduction against a potential reduction is equivalent to finding a “meta-meta-reduction” against the
strong existential unforgeability of the signature scheme. This means that the existence of a meta-
reduction implies that the scheme must be insecure (against a slightly stronger attack) in the first place.

1 Introduction

On a technical level, we investigate the security of Fiat-Shamir (FS) signatures [FS87] in the non-programmable
random oracle model (NPROM), i.e., where programming the hash function is prohibited. Such program-
ming has been exploited in the security proof for common FS signatures by Pointcheval and Stern [PS00],
bringing forward the question if the security result remains valid in the more stringent model of non-
programmable random oracles. Conceptually, though, the more interesting result in the paper refers to
limitations of so-called meta-reductions. Such meta-reductions are also called “reductions against the re-
ductions” as they basically treat the reduction as an adversary itself and reduce the existence of such a
reduction to a presumably hard problem, ruling out reductions and therefore security proofs for the un-
derlying scheme. This proof technique recently gained quite some attention as it rules out certain reduc-
tions, especially those which only treat the adversary but not the underlying primitive as a black box (e.g.,
[Cor02, PV05, GBL08, FS10, Pas11, GW11, AGO11, Seu12]). We show, via a “meta-meta-reduction”, that
one cannot use the meta-reduction technique to show impossibility results for FS signatures in the NPROM.
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1.1 Fiat-Shamir Signatures in the NPROM

The class of FS signatures comprises all transformed three-move identification schemes in which the challenge
ch, sent by the verifier in return of the prover’s initial commitment com, is replaced by the hash value
H(com,m) for message m. The prover’s response resp, together with com, then yields the signature
(com,resp) for m. For some cases, like the Schnorr signature scheme [Sch91], the signature can be shortened
by using (ch,resp) instead.

The common security proof for FS signature schemes in the random oracle model [BR93], given in [PS00],
basically works as follows. The reduction to the underlying problem, such as the discrete logarithm problem
for the Schnorr scheme, runs the adversary twice. In the first runs the reduction gets a signature forgery
(com,resp) for message m and challenge ch = H(com,m). In the second run it re-programs H to yield
a distinct challenge ch′ = H(com,m) and response resp′. From both signatures the reduction can then
compute a solution to the underlying problem. Clearly, this technique relies on the programmability of the
hash function.1

Fischlin et al. [FLR+10] later defined reductions in the non-programmable random oracle model (NPROM)
by externalizing the hash function to both the adversary and the reduction.2 In the NPROM the reduction
may still observe the adversary’s queries to the hash function, but cannot change the reply. Obviously, this
non-programming property matches much closer our understanding of “real” hash functions and instantia-
tions through, say, SHA-3. Interestingly, though, Fischlin et al. [FLR+10] do not investigate this arguably
most prominent application of the random oracle methodology. Instead, they separate programming and
non-programming reductions (and an intermediate notion called weakly programming reductions) through
the case of OAEP encryption, FDH signatures, and trapdoor permutation based KEMs. Weakly program-
ming reductions are allowed to reset the random oracle and redirect the value to some (external) random
answer. Our first result is to formally confirm the intuition that FS signatures should still be secure in the
weakly programmable random oracle model.

1.2 Limitations Through Meta-Reductions

The more interesting question is if FS signatures can be shown to be secure in the NPROM. Our first result
in this regard is negative and applies to discrete log schemes like the Schnorr signature scheme [Sch91]
or the RSA-based Guillou-Quisquater scheme [GQ88]. Namely, we first consider any reduction R which
initiates only a single (black-box) instance of the adversary A for some public key pk, but such that it
can reset A arbitrarily to the point after having handed over the public key (from the fixed group). Note
that the reduction in the programmable ROM in [PS00] is of this kind, only that it can also change the
behavior of the random oracle, unlike our reductions here in the NPROM. We show that this type of single-
instance reduction to the discrete log problem cannot succeed in the NPROM under the one-more discrete
log assumption [BNPS03].

Our impossibility result follows from presenting a meta-reduction M against R. That is, we show
that if one can find a reduction R which successfully solves the DL problem given black-box access to
any successful adversary A against the signature scheme, then there is a meta-reduction M breaking the
one-more DL problem directly. Since we also present a successful (unbounded) adversary A which M can
simulate towards R efficiently, we conclude that the existence of reduction R would already contradict the
one-more DL problem.

We observe that our meta-reduction, too, works in the NPROM and thus cannot program the random
oracle forR; else the meta-reduction would violate the idea of modeling hash functions as non-programmable.
It is also easy to show that, if the meta-reduction, unlike the reduction, was allowed to program the random
oracle, this “unfair” situation would straightforwardly dismiss the possibility of such reductions. However,

1Note that this proof reduces the security of the signature scheme to the underlying number-theoretic problem via special
soundness. Abdalla et al. [AABN02] more generally consider FS schemes with reductions to the identification schemes. We do
not cover the latter type of reductions and schemes here.

2The role of programmability was first investigated by Nielsen [Nie02], even though not for reductions as in the proofs of
Fiat-Shamir schemes.
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such an approach seems to violate the idea behind non-programmable oracles as a mean to capture real-world
hash functions over which no party, not even the meta-reduction, has control.

The noteworthy property of our meta-reduction M is that, unlike most of the previous proposals
(cf. [Fis12]), it does not work by resetting the reduction R. The reset strategy is usually used to rewind the
reduction and, in case of signature schemes, get an additional signature through a signing query in an execu-
tion branch, and display this signature back to R as a forgery in the main branch. However, this means that
one needs to take care of correlations between the additional signature and the reduction’s state. Instead of
using such resets, our meta-reduction will essentially run two independent copies of the reduction and use
the signatures of one execution in the other one. The independence of the executions thus “decorrelates” the
additional signature from the reduction’s state, avoiding many complications from the resetting strategy.

1.3 Limitations of Meta-Reductions

Does our meta-reduction impossibility result for non-programming reductions extend to other cases like the
discrete logarithm problem? We show that this is unlikely, thus showing limitations of the meta-reduction
technique. The idea is to consider the meta-reduction itself as a reduction, and to use the meta-reduction
technique against this reduction. Hence, we obtain a “meta-meta-reduction” N which now simulates the
reduction R for M, just as the meta-reduction simulates the adversary for R.

More concretely, assume that we consider reductionsR transforming an adversary A against the signature
scheme in a black-box way into a solver for some cryptographic problem ΠR. Then, a meta-reduction M
should turn R (to which it has black-box access) into a successful solver for some problem ΠM. For technical
reasons, in our case this problem ΠM has to be non-interactive, e.g., correspond to the discrete logarithm
problem; this also circumvents the case of our previous meta-reduction for the interactive one-more DL
problem. Then we show that such a meta-reduction can be used to build a meta-meta-reduction N against
the strong unforgeabilty of the signature scheme.

In other words, the meta-reduction technique cannot help to rule out black-box reductions to arbitrary
problems, unless the signature is insecure in the first place. Here, insecurity refers to the notion of strong
unforgeability where the adversary also succeeds by outputting a new signature to a previously signed
message. In fact, in the programmable ROM the security proof in [PS00] actually shows that the FS
schemes achieve this stronger notion.

1.4 Related Work

As mentioned before, meta-reductions have been used in several recent results to rule out black-box reductions
for Fiat-Shamir schemes, and especially for Schnorr signatures. Paillier and Vergnaud [PV05] analyzed the
security of Schnorr Signatures in the standard model. They showed with the help of meta-reductions that, if
the one-more discrete logarithm assumption holds, the security of Schnorr signatures cannot be reduced to
the (one-more) discrete logarithm problem, at least using algebraic reductions. While algebraic reductions
where first defined by Boneh and Venkatesan [BV98], Paillier and Vergnaud [PV05], however, use a slightly
more liberal definition of algebraicity. Their notion basically states that, given the discrete logarithm of all
of the reduction’s inputs and access to the reduction, it is possible to compute the discrete logarithm of any
group element output by the reduction. We note that the ability to trace the discrete logarithms of the
group elements produced by the reduction is important to their result and allows them to prove impossibility
even for key-only attacks.

Paillier and Vergnaud [PV05] also extended their result to other signature schemes, including the Guillou-
Quisquater scheme [GQ88] and the one-more RSA assumption [BNPS03]. They also considered the tightness
loss in the Pointcheval-Stern proof for the Schnorr signature scheme in the programmable random oracle
model. They showed, again for algebraic reductions, that the security loss of a factor

√
qH is inevitable,

where qH is the maximum number of random oracle queries by the adversary. This bound was later raised

to q
2/3
H by Garg et al. [GBL08] in the same setting. Seurin [Seu12] recently improved this bound further to

O(qH). Using meta-reduction techniques and considering algebraic reductions, too, he proved it is unlikely
that a tighter reduction exists.
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In a recent work, Baldimtsi and Lysyanskaya [BL12] showed, via meta-reductions, that one cannot prove
blind Schnorr signatures secure via black-box reductions. Their meta-reduction, like ours here, has the inter-
esting feature of being non-resetting. Remarkably, though, they seem to rule out the more liberal program-
ming reductions, whereas our result is against the “more confined” non-programming reductions. However,
their result considers a special type of programming reduction, called naive. This roughly means that one
can predict the reduction’s programmed random oracle answers by reading the reduction’s random tape.
This property is inherently tied to the programmability and is clearly not fulfilled by non-programmable,
external random oracles; for such oracles even the reduction does not know the answers in advance. This,
unfortunately, also means that their meta-reduction technique may not apply to non-programmable hash
functions. In other words, one may be able to bypass their impossibility result and may still be able to find a
cryptographic security proof for such schemes, by switching to the non-programmable random oracle model,
or even to standard-model hash functions.

1.5 Organization

In Section 2 we first recall some basic facts about signatures and (general and discrete-log specific) crypto-
graphic problems. Then we show that FS signatures are secure in the weakly programmable random oracle
model, and prove our meta-reduction impossiblity result for single-instance reductions in the NPROM in
Section 3. Our main result about meta-meta-reductions appears in Section 4.

2 Preliminaries

We use standard notions for digital signature schemes S = (KGen,Sign,Vrfy) such as existential unforgeability
and strong existential unforgeability. We usually assume (non-trivially) randomized signature schemes, where
the signature algorithm has super-logarithmic min-entropy for the security parameter κ, i.e., H∞(Sign(sk,m)) ∈
ω(log(κ)) for all keys sk, all messages m, and given the random oracle.

2.1 Digital Signature Schemes

We recall the syntax of digital signature schemes in Definition 2.1.

Definition 2.1 (Digital Signature Scheme) A signature scheme S = (KGen,Sign,Vrfy) consists of three
algorithms:

The key generation algorithm KGen takes as input the security parameter 1κ and generates a key pair
(sk, pk)← KGen(1κ).

The signing algorithm Sign takes as input a secret key sk and a message m ∈ {0, 1}∗. Additionally it
takes a randomizer ω ∈ Coinspk and outputs a signature σ ← Sign(sk,m;ω). The set Coinspk depends on the
signature scheme and possibly on the public key. Whenever ω is not specified in an invocation of Sign, it is
to be understood as uniformly chosen from Coinspk.

The verification algorithm Vrfy takes as input a public key pk, a message m, and a candidate signature
σ and outputs a bit b← Vrfy(pk,m, σ).

The scheme S is correct if and only if for all κ ∈ N, all (sk, pk) ← KGen(1κ), all m ∈ {0, 1}∗, all

ω ∈ Coinspk, and σ ← Sign(sk,m;ω), it holds that Vrfy(pk,m, σ)
?
= 1.

We recall two common security notions for digital signature schemes. Namely the notions of existential
unforgeability under adaptive chosen-message attacks in Definition 2.2 and strong existential unforgeability
under adaptive chosen-message attacks in Definition 2.3.

Definition 2.2 (Existential Unforgeability) A signature scheme S is said to be existentially unforge-
able under adaptive chosen-message attacks (EUF-CMA) if and only if for all probabilistic polynomial-time
adversaries A the following success function is negligible in κ.

SuccS,AEUF-CMA(κ) = Pr
[
ExpS,AEUF-CMA(κ)

?
= 1
]
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where ExpS,AEUF-CMA(κ) is the existential unforgeability experiment from Figure 1.

Definition 2.3 (Strong Existential Unforgeability) A signature scheme S is said to be strongly exis-
tentially unforgeable under adaptive chosen-message attacks (sEUF-CMA) if and only if for all probabilistic
polynomial-time adversaries A the following success function is negligible in κ.

SuccS,AsEUF-CMA(κ) = Pr
[
ExpS,AsEUF-CMA(κ)

?
= 1
]

where ExpS,AsEUF-CMA(κ) is the strong existential unforgeability experiment from Figure 1.

ExpS,AEUF-CMA(κ) :

(sk, pk)← S.KGen(1κ)

(m∗, σ∗)← AS.Sign(sk,·)(pk)

if

(
S.Vrfy(pk,m∗, σ∗)

?
= 1

and m∗ 6∈M

)
then output 1

else output 0

ExpS,AsEUF-CMA(κ) :

(sk, pk)← S.KGen(1κ)

(m∗, σ∗)← AS.Sign(sk,·)(pk)

if

(
S.Vrfy(pk,m∗, σ∗)

?
= 1

and (m∗, σ∗) 6∈ Q

)
then output 1

else output 0

Figure 1: (Strong) Existential Unforgeability Experiments. We denote by M the set of all messages queried
by A to the signing oracle and by Q the set of message-signature pairs resulting from sign queries issued by
A.

For the most part, we focus on non-trivially randomized signature schemes in this paper. We introduce
the notion of randomized signature schemes in Definition 2.5. As the definition is in terms of the signatures’
min-entropy, we first recall the definition of a discrete random variable’s min-entropy in Definition 2.4.

Definition 2.4 (Min-Entropy) The min-entropy of a discrete random variable X is defined as

H∞(X) = − log max
i
pi

where pi for 1 ≤ i ≤ N is the probability that xi is chosen according to the distribution of X. The min-
entropy gives us an upper bound to the probability that a value chosen according to the distribution of X
matches any fixed value as

∀x : Pr[x′ = x|x′ ← X] ≤ 2−H∞(X).

Definition 2.5 (Randomized Signature Scheme) A signature scheme S is said to be randomized if and
only if for all security parameters κ ∈ N, all key pairs (sk, pk) ← KGen(1κ), and all messages m ∈ {0, 1}∗
the min-entropy of the random variable describing the signing process is super-logarithmic in the security
parameter. That is, the following must hold:

∀κ ∈ N : ∀(sk, pk)← KGen(1κ) : ∀m ∈ {0, 1}∗ : H∞(Sign(sk,m)) ∈ ω(log(κ)).

For random oracle based schemes we also assume that the entropy is large when given the random oracle.
Schnorr signatures obey this property of randomized signatures, but they also allow to determine the hash
queries which the signer has made given the signature only:

Definition 2.6 (Signature Scheme with Reconstructible Hash Queries) A signature scheme S in
the random oracle model is said to have reconstructible hash queries if there exists an efficient algorithm A
such that for all security parameters κ ∈ N, all key pairs (sk, pk)← KGen(1κ), all messages m ∈ {0, 1}∗, and
all signatures σ ← Sign(sk,m) for which Sign made an (ordered) sequence Q of random oracle queries, we
have Q = A(pk,m, σ).
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2.2 Cryptographic Problems

We define a cryptographic problem as a game between a challenger and an adversary. The challenger uses
an instance generator to generate a fresh instance of the problem. The adversary is then supposed to find
a solution for said instance. The challenger may assist the adversary by providing access to some oracle,
like a decryption oracle in a chosen-ciphertext attack against indistinguishability. Eventually the adversary
outputs a solution for the problem instance and the challenger uses a verification algorithm to check whether
the solution is correct.

For many problems there exist trivial adversaries, e.g., succeeding in an indistinguishability game by
pure guessing. One is usually interested in the advantage of adversaries beyond such trivial strategies. We
therefore introduce a so-called threshold algorithm to cover such trivial attacks and measure any adversary
against this threshold adversary.

Definition 2.7 (Cryptographic Problem) A cryptographic problem Π = (IGen,Orcl,Vrfy,Thresh) con-
sists of four algorithms:

• The instance generator IGen takes as input the security parameter 1κ and outputs a problem instance
z. The set of all possible instances output by IGen is called Inst.

• The computationally unbounded and stateful oracle algorithm Orcl takes as input a query q ∈ {0, 1}∗
and outputs a response r ∈ {0, 1}∗ or a special symbol ⊥ indicating that q was not a valid query.

• The deterministic verification algorithm Vrfy takes as input a problem instance z ∈ Inst and a candidate
solution x ∈ Sol. The algorithm outputs b ∈ {0, 1}. We say x is a valid solution to instance z if and

only if b
?
= 1.

• The efficient threshold algorithm Thresh takes as input a problem instance z and outputs some x. The
threshold algorithm is a special adversary and as such also has access to Orcl.

We note that the algorithms IGen, Orcl, Vrfy potentially have access to shared state that persists for the
duration of an experiment.

Definition 2.8 (Hard Cryptographic Problem) For a cryptographic problem Π = (IGen,Orcl,Vrfy,Thresh)
and an adversary A we define the following experiment:

ExpAΠ(κ) : [z ← IGen(1κ);x← AOrcl(z); b← Vrfy(z, x); output b].

The problem Π is said to be hard if and only if for all probabilistic polynomial-time algorithms A the following
advantage function is negligible in the security parameter κ:

AdvAΠ(κ) = Pr
[
ExpAΠ(κ)

?
= 1
]
− Pr

[
ExpThreshΠ (κ)

?
= 1
]
,

where the probability is taken over the random tapes of IGen and A.

We sometimes require some additional properties of cryptographic problems, summarized in the following
definition:

Definition 2.9 (Specific Cryptographic Problems) Let Π = (IGen,Orcl,Vrfy,Thresh) be a cryptographic
problem as defined in Definition 2.7.

• The problem Π is said to be non-interactive if and only if Π.Orcl is the algorithm that always outputs
⊥ and never changes the shared state.

• The problem Π is said to be efficiently generatable if and only if Π.IGen is a polynomial-time algorithm.
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• The problem Π is said to be solvable if and only if Π.Sol is recursively enumerable, and the following
holds:

∀z ← Π.IGen(1κ) : (∃x ∈ Π.Sol : Π.Vrfy(z, x)
?
= 1).

• The problem Π is said to be monotone if and only if for all instances z ← Π.IGen(1κ), all solutions

x ∈ Π.Sol, all n ∈ N, and all sequences of queries (q1, . . . , qn) the following holds: If Π.Vrfy(z, x)
?
= 1

holds after executing the queries Π.Orcl(q1); . . . ; Π.Orcl(qn), then this already held before Π.Orcl(qn)
was executed.

Intuitively, an algorithm solving a monotone problem is not punished for issuing fewer queries. In
particular, if a solution is valid after some sequence of queries, it is also valid if no queries were executed at
all.

2.3 Discrete Logarithm Assumptions

The discrete logarithm problem with its corresponding hardness assumption is a specific instance of a non-
interactive, efficiently generatable, and solvable problem. The assumption about the computational infeasi-
bility of computing logarithms in certain groups is formally defined in Definition 2.10.

Definition 2.10 (Discrete Logarithm Assumption) Let G = 〈g〉 be a group of prime order q with
|q| = κ. The discrete logarithm (DL) problem over G —written DLG— is defined as follows:

Instance and Solution space: The instance space Inst is G and the solution space Sol is Zq.

Instance Generation: The instance generator IGen(1κ) chooses z
$← G and outputs z. Note that this

sampling of z may require to pick a random w
$← Zq and compute z = gw.

Verification: The verification algorithm Vrfy(z, x) computes z′ = gx. If z′
?
= z, then it outputs 1, otherwise

it outputs 0.

Threshold: The threshold algorithm Thresh(z) chooses x
$← Zq and outputs x.

The discrete logarithm assumption is said to hold over G if DLG is hard.

A natural extension of the discrete logarithm problem are the interactive, efficiently generatable, mono-
tone, and solvable one-more discrete logarithm problems first introduced by Bellare et al. [BNPS03]. They
are interactive, as the adversary is given access to an oracle capable of solving the DLG problem. However,
an adversary computing n + 1 discrete logarithms can only request at most n discrete logarithms from the
DL oracle, hence, the name one-more discrete-log problem. The problems with their corresponding hardness
assumptions are formally described in Definition 2.11. The assumptions are believed to be stronger than the
regular DL assumption [BMV08].

Definition 2.11 (n-One-More Discrete Logarithm Assumption [BNPS03]) Let G = 〈g〉 be a group
of prime order q with |q| = κ. The n-one-more discrete logarithm (n-DL) problem over G –written n-DLG–
is defined as follows:

Instance and Solution space: The instance space Inst is Gn+1 and the solution space Sol is Zn+1
q .

Shared State: The shared state consists only of a single counter variable i.

Instance Generation: The instance generator IGen(1κ) initializes i := 0 in the shared state, chooses

z0, . . . , zn
$← G, and outputs (z0, . . . , zn).

Oracles: The oracle algorithm Orcl(z), on input z ∈ G, increments i := i+ 1. It then exhaustively searches

Zq for an x such that gx
?
= z and outputs x. On input some z 6∈ G, Orcl outputs ⊥.
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Verification: The verification algorithm Vrfy((z0, . . . , zn), (x0, . . . , xn)) computes z′j = gxj . If z′j
?
= zj for

all j and if i ≤ n, then it outputs 1, otherwise it outputs 0.

Threshold: The threshold algorithm Thresh(z) chooses x0, . . . , xn
$← Zq and outputs (x0, . . . , xn).

The n-one-more discrete logarithm (n-DL) assumption is said to hold over G, if and only if the n-DLG
problem is hard.

3 Security of Schnorr Signatures

We first recall the definition of the Schnorr signature scheme (SSS) [Sch90, Sch91] as derived from the
Schnorr identification scheme via the Fiat-Shamir transform [FS87]. Afterwards, we analyze the security of
the resulting signature scheme in two variants of the random oracle model, in which reductions are limited
in the way they can program the random oracle.

Definition 3.1 (Schnorr Signature Scheme) Let G be a cyclic group of prime order q with generator g
and let H : {0, 1}∗ → Zq be a hash function modeled as a random oracle. The Schnorr signature scheme,
working over G, is defined as follows:

Key Generation: The key generation algorithm KGen(1κ) proceeds as follows: Pick sk
$← Zq, compute

pk := gsk, and output (sk, pk).

Signature Generation: The signing algorithm Sign(sk,m; r) proceeds as follows: Use r ∈ Zq and compute
R := gr. Compute c := H(R,m) and y := r + sk · c mod q. Output σ := (c, y).

Signature Verification The verification algorithm Vrfy(pk,m, σ) proceeds as follows: Parse σ as (c, y). If

c
?
= H(pk−cgy,m), then output 1, otherwise output 0.

3.1 Unforgeability of Schnorr Signatures Under Randomly Programming Re-
ductions

We begin by showing that the original proof by Pointcheval and Stern [PS96, PS00] still holds for randomly
programming reductions. Randomly programming reductions as defined in [FLR+10] do not simulate the
random oracle themselves. Instead, they can re-set the random oracle to another hash value. As shown
in [FLR+10] such randomly programming reductions are equivalent to the weakly-programmable random
oracle model (WPROM) which is in between the programmable and non-programmable ROM. Whereas a
conventional random oracle has only a single interface implementing a random mapping from domain Dom
to range Rng, a weakly programmable random oracle has three interfaces, which allow for programming but
only in a weak sense: one cannot freely re-program the hash values but only re-set them to another random
value:

Definition 3.2 (Weakly Programmable Random Oracle) A weakly programmable random oracle (WPRO)
exposes three interfaces to the caller:

Evaluation: The evaluation interface ROeval behaves as a conventional random oracle, mapping Dom →
Rng.

Random: The random interface ROrand takes as input bit strings of arbitrary length and implements a
random mapping {0, 1}∗ → Rng.

Programming: The programming interface ROprog takes as input a pair (a, b) ∈ Dom × {0, 1}∗ and pro-
grams ROeval(a) to evaluate to ROrand(b).
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The randomly programming reduction gets oracle access to all three interfaces, whereas the adversary
only gets access to the ROeval interface. We now show that randomly programming reductions are sufficient
to prove SSS secure in the ROM.

Theorem 3.3 (EUF-CMA Security of SSS Under Randomly Programming Reductions) The
EUF-CMA security of SSS is reducible to the discrete logarithm problem over G using a randomly pro-
gramming reduction R.

Proof. (Sketch) We provide a description of a randomly programming reduction. Basically, the reduc-
tion behaves identically to the original reduction from [PS00]. We merely need to show that the limited
programmability still allows the reduction to simulate the signing oracle and to apply the forking technique.

Simulating the Signing Oracle. When asked to sign a message m, the reduction R chooses b
$←

{0, 1}κ and y
$← Zq, computes c ← ROrand(b) and R := pk−cgy, and reprograms the oracle by calling

ROprog((R,m), b). It then outputs (c, y).

Forking. To fork after the first j oracle calls, R proceeds as follows: For i ≥ j, whenever A asks the query

ROeval(ai), R picks bi
$← {0, 1}κ and reprograms the oracle by calling ROprog(ai, bi) before the original query

is evaluated. Note that, just as in case of the full programming of the random oracle in [PS00] for the random
values R from the group, the distribution of ROeval(ai) is slightly biased, because of the possibility that the
bi’s collide. However, as the size of the domain from which bi’s are uniformly chosen is exponential in the
security parameter, the collision probability —and therefore the bias— is also negligible, as it is for random
group elements. �

We thus show that the limited programmability of a randomly programming random oracle is sufficient to
obtain a (loose) proof of security for Schnorr signatures. In particular, choosing range points of the random
oracle at will is not required for the proof. We note that the above result transfers to other FS schemes such
as [Oka93, GQ88, FF02].

3.2 Schnorr Signatures are not Provably Secure Under Non-Programming Single-
Instance Reductions

We now show that the Schnorr Signature Scheme cannot be proven existentially unforgeable under chosen
message attacks without programming the random oracle —at least with respect to a slightly restricted
type of reduction. We actually prove that, if such a reduction exists, the 1-one-more discrete logarithm
assumption does not hold over G.

We term the restricted class of reductions as single-instance reductions. Such single-instance reductions
only invoke a single instance of the adversary and, while they may rewind the adversary, they may not
rewind it to a point before it received the public key for the first time. This class of reductions is especially
relevant, because both the original security reduction by Pointcheval and Stern [PS00] as well as the one in
Theorem 3.3 are of this type.

Instead of simulating the random oracle itself, a non-programming reduction works relative to an external
fixed random function and it is required to honestly answer all random oracle queries. That is, the black-box
reduction can observe the adversary’s queries to the random oracle, but cannot change the answers. We
omit a formal approach (see [FLR+10]) because the definition reflects the intuition straightforwardly. We
remark that the approach assumes fully-black-box reductions [RTV04] (or, in terms of the CAP taxonomy
of [BBF13], the BBB-type of reduction) which need to work for any (unbounded) adversary oracle. In
particular, and we will in fact exploit this below, the adversary can thus depend on the reduction. We may
therefore think of the adversary as a family A of adversaries AR,a, depending on the reduction R and using
some randomness a. We believe it is conceptually easier in this case here to make the randomness a explicit,
as opposed to having a single adversary that internally chooses a at the beginning of the execution. It is
nonetheless sometimes convenient to omit these subindices and to simply write A.
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σ1

find δ s.t. gδ
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= pk0 · pk

−1
1

σ∗ := (R, c, y − δc)

AR,(m0,m1,z,$)

pk0

m0

σ0

m1, σ
∗

Figure 2: For each reduction R, the associated inefficient adversary AR works by choosing messages, a
group element, and a random tape describing a random function. It proceeds to forge a signature by
internally simulating an instance of R on the group element and the random tape and using its unbounded
computational power to adapt the resulting signature to the public key passed by the outside game.

Theorem 3.4 (Non-Programming Irreducibility for SSS) Assume that the 1-one-more discrete log-
arithm assumption holds over G. Then, there exists no non-programming single-instance fully-black-box
reduction that reduces the EUF-CMA security of SSS over G to the discrete logarithm problem over G.

More precisely, assume there exists a non-programming single-instance fully-black-box reduction R that
converts any adversary A against the EUF-CMA security of SSS working in group G into an adversary against

the DL problem over G. Assume further that the reduction has success probability SuccR
A

DL,G(κ) for given A
and runtime TimeR(κ). Then, there exists a family A of successful (but possibly inefficient) adversaries AR,a
against the EUF-CMA security of SSS and a meta-reduction M that breaks the 1-DL assumption over G with

non-negligible success probability SuccM1-DL,G(κ) ≥ (SuccR
AR,a

DL,G (κ))2 for a random AR,a ∈ A and runtime
TimeM(κ) = 2 · TimeR(κ) + poly(κ).

Note that the fact that A breaks SSS working over G implies that for any public key pk output by R it holds
that pk ∈ G.

Proof. Roughly, the meta-reduction M with inputs z0, z1 works as follows: It invokes two instances R0

and R1 of the reduction in a black-box way, on inputs z0 and z1, respectively, and independent random
tapes. When the instances of R invoke the forger with public key pk0 and pk1 respectively, M simulates
a specific forger, we will describe below and which will allow the meta-reduction to be “sufficiently close”
to the adversary’s behavior. To do so, the meta-reduction queries random messages to the sign oracles and
obtains signatures on them. It then queries the quotient of the two public keys, i.e., pk0pk

−1
1 , to the DLOM

oracle, thus obtaining the difference between the secret keys. The difference between the secret keys can then
be used to adapt the obtained signatures to the other public key, respectively. These adapted signatures are
then returned to the reductions as forgeries. As we are working in the (non-programmable) random oracle
model, the instances of R expect to see all the random oracle queries, the (simulated) adversary would issue.
The meta-reductionM therefore makes sure to issue exactly those queries. Then the meta-reduction mimics
the behavior of the adversary closely, and succeeds in solving the 1-one-more DL problem.

A Family of Adversaries AR,a. Let A be defined as the set A = {0, 1}κ×{0, 1}κ×G×{0, 1}poly(κ). For
every a = (m0,m1, z,$) ∈ A and every reduction R we define the adversary AR,a as described below. Since
the reduction has to work for any adversary, it particularly needs to succeed for randomly chosen a ← A
(and thus for randomly chosen AR,a from the family), such that AR,a is still deterministic but we can take
the random choice of a into account when arguing about probabilities. Note we occasionally drop (parts of)
the subindex from AR,a for sake of simplicity.

Upon receiving as input the public key pk, adversary AR,a queries m0 to its signing oracle and verifies
the reply σ0. If the signature σ0 is invalid, AR aborts. Otherwise, AR discards the signature and invokes
an internal copy of R —denoted R∗ in the following— on input z and random tape $. The adversary AR

10



R0 A0

z0

pk0

m0

(R0, c0, y0)

(R1, c1, y
′
1)
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MR
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δ
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sk
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sk

1

M
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x0, x1

RO

x0 x1

Figure 3: The meta-reduction uses two instances of R and simulates the adversary A by obtaining the
difference between the secret keys and adapting the signatures output by R to the other key, respectively.

forwards all random oracle queries by R∗ to the external random oracle. When R∗ invokes the forger by
outputting a public key pk1, AR queries m1 to R∗ and verifies the reply. If R∗ is unable to sign m1, AR
aborts. Otherwise it obtains a signature σ1 = (c1, y1) on m1, aborts R∗, and proceeds to forge a signature.

Using exhaustive search, the adversary AR finds δ ∈ Zq such that pk ·pk−1
1 = gδ, i.e., δ = sk− sk1 mod q.

Given this difference of the secret keys, it then adapts σ1 to the public key pk by computing σ1
∗ = (c1

∗, y1
∗) :=

(c1, y1−δ ·c1 mod q). Finally, it returns the forgery (m1, σ1
∗). Note that AR’s behaviour is fully deterministic

and it thus will always return the same message-signature pair, even if it is rewound. Further, observe that
for any reduction R, AR is successful with at least the same probability with which an instance of R is able
to sign a randomly chosen messages (minus the negligible term 2−κ for which the two messages collide).

As stated in the informal description of the meta-reduction above, it is necessary to consider which
random oracle queries the adversary AR would issue. These queries are exactly those required for verifying
σ0, those asked by R∗ up to the point where R∗ answers the first signature query, and those required for
verifying σ1. These queries are all issued after the only signing query has already been answered. It is
important that a meta-reduction simulating AR behaves in exactly the same way.

Description of M. The meta-reduction M, depicted in Figure 3, on input z0, z1 ∈ G invokes two
instances of R with independent random tapes. The first one, in the following denoted R0, gets as input
z0. The second one, denoted R1, gets as input z1. All random oracle queries issued by either R0 or R1 are
answered by forwarding the query to the external random oracle and returning the answer. Both instances
can now invoke the forger A at most once.

To simulate A for each copy, algorithm M now proceeds as follows:

1. Obtain pkb ← Rb for b = 0, 1 and choose m0,m1
$← {0, 1}κ.

2. Query (c0, y0)← R0.Sign(m0), (c1, y1)← R1.Sign(m1) and verify both signatures.

3. If either R0 or R1 were unable to provide a valid signature, abort.

4. Let QH,b be the sequence of random oracle queries issued by Rb up to, and including, step 2. This
also includes the hash queries to verify the corresponding signature.

11



5. Query QH,1 to the random oracle interface provided by R0, and QH,0 to the random oracle interface
provided by R1, emulating the same hash queries the adversary instance for each reduction would
issue.

6. Query δ ← DLOM(pk0pk
−1
1 ) and adapt signatures: σ′0 := (c0, y0 − δ · c0 mod q), σ′1 := (c1, y1 + δ ·

c1 mod q).

7. Return (m1, σ
′
1) as a forgery to R0 and (m0, σ

′
0) as a forgery to R1.

Potentially, M may not obtain any signature from R0 (resp. R1) in Step 2, because the reduction has
already output a solution directly. This might happen if the instance either never invokes the adversary
or chooses not to answer the sign query and directly outputs the solution instead. If this happens, then
the meta-reduction would have received one of the discrete logarithms without invoking its DLOM oracle.
Therefore, it could just abort the other reduction instance, query the remaining input to the DLOM oracle
and output the solutions. In the following we can therefore assume that the reductions actually run an
instance of A and answer the signature queries.

If Rb for b ∈ {0, 1} tries to rewind the forger,M will keep querying mb, issuing QH,1−b as random oracle
queries, and outputting (m1−b, σ

′
1−b) as a forgery. Note that this behavior is consistent with the behavior

of AR,(mb,m1−b,x1−b,$1−b), where $1−b is the random tape used by R1−b. After both instances of R have
invoked at most one instance of A and possibly rewound a polynomial number of times, each outputs a
solution candidate x0 and x1, respectively. Finally, M outputs x0, x1.

Observe that the number of DLOM oracle queries is independent of the forger. In fact, M queries the
DLOM exactly once to simulate both forgers. Therefore,M is a valid adversary in the 1-DL experiment. This
is also the point where it is crucial that R is single-instance, see Remark 3.2 below.

The runtime of M consists of two executions of R, n oracle calls, and a constant number of modular
inversions, multiplications, and additions. Therefore, it holds that TimeM(κ) = 2 · TimeR(κ) + poly(n).
Furthermore, whenever both R0 and R1 are successful, i.e., they both managed to compute the discrete
logarithm of their input, M knows the discrete logarithms of all its inputs and is, therefore, also successful.
However, the question remains if the simulation of A is convincing, i.e., indistinguishable from the real
forger.

Correctness of the Forger Simulation. It is easy to see that the adaption used by M yields valid
signatures under the correct public key:

y′0 := y0 − δ · c0 = r0 + sk0 · c0 − (sk0 − sk1) · c0 = r0 + sk1 · c0 mod q

y′1 := y1 + δ · c1 = r1 + sk1 · c1 + (sk1 − sk0) · c1 = r1 + sk0 · c1 mod q

The question remains, whether the forgeries presented by M —coming from instances of the reduction
itself— might have some structure that makes them useless to the reduction, thus lowering the reduction’s
success probability and causing M to fail. Fortunately, this is not the case, because M perfectly mimics
AR,a for some a ∈ A. Both algorithms compute the forgery as follows: Run an instance of R on a random
input and an independent random tape. Obtain a signature on a randomly chosen message m from said
instance. Adapt the signature to the public key received as input using the difference of the secret keys.
Thus, the forgeries are distributed identically.

Furthermore, the output behavior of both algorithms is identical. Both algorithms, on input a public key,
first query a random message to the signing oracle. Then, they issue exactly those random oracle queries
needed to verify the received signature, and the ones asked by R up to the point where R answers the first
signing query. Finally, they both output the forgery, which, as mentioned above, is distributed identically in
both cases. When rewound, the outputs of both algorithms remain the same.

Therefore, AR and M are perfectly indistinguishable from R’s point of view and thus SuccR
M

DL,G(κ) =

SuccR
AR

DL,G (κ). As stated before,M is successful whenever both instances of the reduction are successful and,

therefore, SuccM1-DL(κ) = (SuccR
M

DL,G(κ))2 = (SuccR
AR

DL,G (κ))2.
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It remains to show that SuccR
AR,a

DL,G (κ) is non-negligible. To this end, consider the following (all-powerful)
adversary A0 against the signature scheme which asks for a signature for a random message m ∈ {0, 1}κ
(which remains unchanged after resets). If this adversary receives a valid signature, it exhaustively searches
for the secret key and then creates a signature for another random but fixed message m∗ ∈ {0, 1}κ. This
adversary succeeds with probability 1−2−κ if attacking the actual scheme, taking into account the probability
2−κ of a match of the two messages. Hence, the reduction R here must succeed with some non-negligible
probability if given this (black-box) adversary.

We first assume that the probability that the reduction R0 (the same argument holds for R1) succeeds in
computing the discrete logarithm of z0 and does not answer A0’s (unique) signature query, i.e., R0 succeeds
withoutA0’s help, is negligible. Otherwise, if it was non-negligible, our meta-reduction would already succeed
with non-negligible probability, as the behavior of AR and of A0 are identical, and our meta-reductions wins
for such reductions. We may therefore assume that R0 must correctly answer the only signature query of A0

with some non-negligible probability. But then this is also true for our adversary AR and the internal copy
R∗, as both reductions are initialized randomly and, up to the signature query, the reductions’ views for both
adversaries are identical. Given that our adversary AR,a here receives a valid signature from its internal copy
R∗, it succeeds with probability 1−2−κ. Therefore, the overall success probability of AR,a is non-negligible.

But then SuccR
AR,a

DL,G (κ) must be non-negligible, too, for a successful reduction. This completes the final step
in the proof. �

Remark. Note that the restriction to single-instance reductions is crucial at this point. Consider a reduc-
tion that would output a second public key, either by invoking another instance of A or by rewinding the
adversary to a point before it received the public key. The meta-reduction would then need to issue another
query to the DLOM oracle to simulate the signing oracle. Obviously, M would then have made 2 queries to
the DLOM oracle and could, thus, no longer win in the 1-DL experiment.

Remark. While it may seem strange at first that the adversary AR,a is defined in terms of the reduction,
remember that we are talking about fully black-box reductions here. A reduction R needs to work for any
adversary against the signature scheme. In particular it needs to work for the adversaries AR,a for any
a ∈ A.

Remark. It should be noted, that the meta-reduction employed in the proof of Theorem 3.4 only works
because SSS is defined relative to a single fixed random oracle. If one uses a common variant of the Fiat-
Shamir transform, in which the random oracle is “personalized” by including the public key in the hash query,
c = H(pk, R,m), the meta-reduction no longer works. This is due to the fact that in this case signatures
can no longer be simply adapted to another public key, using only the secret keys’ difference.

Remark. The idea immediately applies to other FS signature schemes with unique keys, where there is a
related one-more problem, such as the RSA-GQ scheme [GQ88].

4 Limitations of the Meta-Reduction Technique

Paillier and Vergnaud [PV05], as well as we here, have used meta-reductions to provide evidence that, once
we drop programmability, the security of Schnorr signatures might not be equivalent to the discrete log
problem after all. Both results are not definitive proofs insofar as they restrict the reduction’s abilities.
Paillier and Vergnaud rule out algebraic reductions in the standard model. We rule out non-programming
single-instance reductions which use the adversary only in a black-box way. There could in principle still
exist a reduction that does not fall into either of these classes. However, it is interesting to note that in
both cases the meta-reduction-based proofs rely on the one-more discrete log assumption. As the discrete
log assumption does not seem to imply its one-more variants [BMV08] the results are, thus, conditional and
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not as strong as they could be. The obvious question is therefore: “Can we do better?” Unfortunately, the
answer turns out to be “Not without finding an actual adversary.”

Our results actually holds for any randomized signature scheme S (where, as explained in Section 2, the
signing algorithm has super-logarithmic min entropy) for which the signing algorithm’s hash queries in any
signature generation can always be reconstructed from the signature alone, in the right order. We call them
randomized signature schemes with reconstructible hash queries, refer to Definition 2.6 for a formal definition.
These schemes include Fiat-Shamir transformed schemes such as Schnorr but also cover (randomized versions
of) FDH-RSA signatures. We show that finding a meta-reduction to a non-interactive problem such as the
discrete log problem is at least as hard as finding an adversary against the strong existential unforgeability
of S. For this, we first describe an inefficient reduction R that is capable of detecting when the forgery it
receives is actually one of the signatures it produced itself as an answer to a signing query. For example, a
meta-reduction may make several signing requests to a reduction and then reset these requests in order to
use one additional message-signature pairs as the forgery. Our reduction will be able to spot such attempts.

The meta-reduction result of the previous section does not apply here, even though our reduction here
will be of the single-instance type. The reason is that the meta-reduction there assumed an (interactive)
one-more DL problem –and made use of the DL oracle– whereas the meta-reduction here should work for
non-interactive problems such as the discrete log problem.

4.1 An Inefficient Reduction for Randomized Signature Schemes with Recon-
structible Hash Queries

Let S be a randomized signature scheme and let ΠR be a monotone solvable problem. Let Q be the set
of message-signature pairs (mi, σi) resulting from queries to R’s signing oracle. Furthermore, let p be the
maximum number of signature queries issued by a forger A and assume that R knows the polynomially
bounded p. We note that for the adversary in our single-instance reductions in the previous section, the
reduction could have been given p = 1, too. For the moment, the reader may think of the meta-reduction as
running a single instance of the reduction; we will later reduce the multi-instance case to the single-instance
case via standard “guess-and-insert” techniques.

The reduction R , depicted in Figure 4, on input an instance z of ΠR first generates a key pair
(sk, pk) ← S.KGen(1κ), then initializes the counter variable i := 0, and chooses a random function O :
{0, 1}2κ ×Zp → Coinspk. The public key pk is then output as the key under which the forger is supposed to
forge a signature. When the forger queries a message m to the signing oracle, R determines random coins

i := 0 (sk, pk)← S.KGen(1κ)

ω ← O(m, i) σ ← S.Sign(sk,m;ω)

if

 S.Vrfy(pk,m∗, σ∗)
?
= 0

∨ ∃i ∈ {0, . . . , p} :

(
ω∗ ← O(m∗, i)

∧ σ∗
?
= S.Sign(sk,m∗;ω∗)

)  abort

Find x ∈ ΠR.Sol such that ΠR.Vrfy(x, z)
?
= 1

R

x

z

pk

m

σ

m∗, σ∗

Figure 4: The reduction uses a random function O to decide whether it is being re-fed its own output. This
way it can abort if it is used in such a way by a potential meta-reduction.

ω ← O(m, i), computes the signature as σ ← S.Sign(sk,m;ω), and returns σ to the forger. The counter i is
then incremented by one. If the counter is ever incremented to p + 1, then R aborts, as it is obviously not
interacting with the real adversary.

Eventually, the forger outputs a forgery (m∗, σ∗). If the signature does not verify, i.e., S.Vrfy(pk,m∗, σ∗)
?
=

0, then R immediately aborts. Otherwise, the reduction computes σj ← S.Sign(sk,m∗;ωj) with ωj ←
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O(m∗, j) for all j ∈ Zp and checks whether σj
?
= σ∗. If the check holds for any σj , then R also immediately

aborts. Otherwise, R enumerates all possible solutions x ∈ ΠR.Sol and checks whether ΠR.Vrfy(x, z)
?
= 1.

Once such an x is found, it is output by R as the solution. Because ΠR is monotone and solvable, it is
guaranteed that there exists a valid solution even though R never issues a single oracle query and that the
enumeration of possible solutions will terminate in finite time.

Observe that the adversary A used by R is an EUF-CMA adversary, therefore, whenever A forges suc-
cessfully, it forges a signature for a message m∗ that has not been queried before. The probability that R
will reject such a forgery is the probability that at least one of the σi collides with σ∗. As O is a random
function, all values to which O evaluates on input m∗ and some number i are uniformly and independently
distributed. For each σi, the probability that it matches σ∗ is thus bounded through the min-entropy of the

random variable describing S.Sign(sk,m∗), i.e., ∀i ∈ Zp : (Pr[σi
?
= σ∗] ≤ 2−H∞(S.Sign(sk,m∗))).

Therefore, the probability that R will accept a forgery is at least 1 − p · 2−H∞(S.Sign(sk,m∗)). As S is
randomized, the probability for each σi to match is negligible and thus

SuccR
A

ΠR (κ) ≥ (1− p · ε(κ)) · SuccS,AEUF-CMA(κ) = SuccS,AEUF-CMA(κ)− ε′(κ)

for negligible functions ε, ε′. Therefore, we conclude that SuccR
A

Π (κ) is non-negligible for any successful
adversary A and that R is, thus, a successful –albeit inefficient– reduction from problem ΠR to the EUF-CMA
security of S.

We next show that the checks of our reduction prevent the meta-reduction to replay signatures to the
reduction. This step relies on the fact that the meta-reduction can only use the reduction in a black-box
way, MR, and has for example no control over the coin tosses of R. First, we show that we can restrict
ourselves to meta-reductions which actually take advantage of the reduction, at least if the meta-reduction’s
problem ΠM is hard:

Lemma 4.1 (Meta-Reductions Rely on the Reduction) LetM be a non-programming meta-reduction
that converts any (EUF-CMAS  ΠR) reduction in a black-box way into an adversary against some hard
problem ΠM. Further, let the reduction used by M be R as described above. Then it holds that M provides
R with a forgery (m∗, σ∗) with non-negligible advantage.

Proof. Assume that this was not the case. Then one could easily simulate R and the meta-reduction
interacting with this reduction would solve ΠM efficiently with non-negligible advantage. This contradicts
the hardness of the problem. �

Hence, from now on we condition on the meta-reduction to always provide the reduction with a forgery,
without losing more than a negligible advantage. In this case we have:

Lemma 4.2 (Meta-Reductions Cannot Replay Signatures) LetM be a non-programming meta-reduction
that converts any (EUF-CMAS  ΠR) reduction in a black-box way into an adversary against some hard
problem ΠM. Let Q be the set of message-signature pairs (mi, σi) resulting from M’s queries to the reduc-
tion’s signing oracle, and let (m∗, σ∗) be the message-signature pair output byM as a forgery on behalf of the
adversary. Further, let the reduction used by M be R as described above. Then it holds that (m∗, σ∗) 6∈ Q.

Proof. The proof is rather straightforward. Observe that by construction of R the following holds: ∀(m,σ) ∈
Q : ∃i ∈ Zp : ω ← O(m, i) ∧ σ ?

= S.Sign(m, i;ω). Therefore, it follows directly that, for (m∗, σ∗) ∈ Q, the

reduction R will abort and SuccR
M

ΠR (κ) = 0 for M if it replays an element of Q as a forgery. Note that here
we rely on the previous Lemma which assumes that M always provides such a forgery. As it, thus, would
not be a successful meta-reduction it must hold that (m∗, σ∗) 6∈ Q. �

4.2 A Reduction against the Meta-Reduction

Using the reduction described in the previous section, we now prove that finding an efficient meta-reduction
for a randomized signature scheme is at least as hard as finding a strong existential forger.
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Theorem 4.3 (Meta-Reductions to Non-Interactive Problems Are Hard) Let S be a randomized
signature scheme with reconstructible hash queries, ΠR be a monotone solvable problem, and ΠM be a non-
interactive, efficiently generatable problem. If ΠM is hard, then finding an efficient meta-reduction M
that converts any successful (EUF-CMAS  ΠR)-reduction in a black-box way into an efficient successful
adversary against ΠM is at least as hard as finding an sEUF-CMA adversary against S.

More precisely, assume there exists an efficient non-programming black-box meta-reduction M that con-
verts any (EUF-CMAS  ΠR)-reduction into an adversary against ΠM. Then, there exists a meta-meta-
reduction N that converts M into an adversary against the sEUF-CMA security of S with non-negligible

success probability SuccS,N
M

sEUF-CMA(κ) ≥ 1
r · Succ

MR
ΠM (κ) and runtime TimeNM(κ) = TimeMR(κ) + poly(κ),

where R is the reduction described above and r is the maximal number of reduction instances invoked by M.

Note that, since M needs to work for any (black-box) R, we may assume that R knows r. Indeed, we
take advantage of this fact in the proof below.

i
$← Zp

∀j ∈ Zr \ {i} : (sk, pk)← S.KGen(κ)

x← ΠM.IGen(κ)

R1

Ri

Rr

N

M

Sign(sk, ·)

x

x1

xi

xr

pk1

pk

pkr

m

m

m

Sign(sk1,m)

σ

Sign(skr,m)

m∗, σ∗

pk

NM

...

...

Figure 5: The meta-meta-reduction relies on the fact thatM cannot replay an old signature. It guesses the
reduction instance, for which M will output a forgery, embeds the public key in that instance, and outputs
the forgery provided by M.

Proof. We construct N –depicted in Figure 5– such that, fromM’s perspective, it is perfectly indistinguish-
able from the reduction R. On input a public key pk of the “outer” signature scheme S the meta-meta-

reduction N chooses a random i
$← Zr to guess the “good” instance among the r copies of the reduction,

and sets pki = pk. For all j ∈ Zr \ {i}, algorithm N computes (skj , pkj) ← KGen(1κ). Then it generates a
random instance x← ΠM.IGen(1κ) and invokes M on x.

When M invokes the jth instance of R on an instance xj of ΠR, N outputs pkj for M to forge a
signature under. Queries to sign message m under public key pkj are answered differently depending on
whether j = i or j 6= i. If j = i, m is simply relayed to N ’s own signature oracle and the answer is sent back
to M. The meta-meta-reduction also makes the hash queries the signature algorithm has made in the right
order; this is possible by the reconstruction property. If j 6= i, N computes σ ← S.Sign(skj ,m) and sends σ
back to M. To be consistent with the behavior of R, it is important to handle rewinding of the simulated
reductions correctly. In particular, R can be rewound to a previous state, where the state basically consists
of the value of its counter variable. If R is now queried some message m which it had already been queried
before in the same state, it will respond with exactly the same random oracle queries and the same signature
on the message. If, on the other hand, the message m has not been queried before in the same state, R’s
response is based on completely independent coins. To mimic this behavior, for every simulated reduction
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instance, N keeps track of the value the counter variable would currently have in an actual instance of R.
For each counter value it then stores all triples (m,σ,Q) of messages, resulting signature, and queries issued
to the random oracle during computation of σ that already resulted in that state. If one of those messages
is queried again, N issues Q to the random oracle again and returns σ.

The random oracle queries required for simulating the reduction instances are all issued to the random
oracle interface provided by the meta-reduction. Queries of the meta-reduction to the random oracle on
the other hand are honestly answered by consulting the external random oracle. Note that the query of
the external signature oracle to the random oracle can be made by N itself after receiving the signature.
Eventually, M outputs the first forgery (m∗, σ∗) under some public key pkj . If j 6= i, N aborts. If j = i, N
stops the execution of M and outputs (m∗, σ∗).

Correctness of Reduction Simulation. We show that N faithfully simulates a maximum of r in-
stances of R. The public key in the sEUF-CMA game, as well as those chosen by N itself are honestly
computed using S’s key generation algorithm. Therefore the public keys output by N are distributed iden-
tically to keys output by several instances of R. The same holds for the answers to the signature queries, as
in both cases the signatures are honestly computed using uniformly and independently chosen random coins
and the random oracle queries issued are exactly those required for an honest execution of S.Sign. Further
when M tries to rewind the reduction, both R and the simulation by N behave identically. Therefore, N
faithfully simulates r instances of R up to the point where M outputs the first forgery.

As the behavior of N is perfectly indistinguishable from the behavior of a number of R instances, we can
now apply Lemma 4.2 (which, in turn, relies on Lemma 4.1). We thus conclude that, ifM would have been
successful, it holds that (m∗, σ∗) is a valid message-signature pair and that (m∗, σ∗) 6∈ Q. If i = j, these
are exactly the conditions for N to win in the sEUF-CMA game. As i is chosen uniformly andM is perfectly

oblivious about i, we get SuccS,N
M

sEUF-CMA(κ) ≥ 1
r ·Succ

MR
ΠM (κ) as claimed. Besides executingM the meta-meta-

reduction N needs to generate an instance of ΠM, generate r−1 key pairs, and answer a polynomial number
of sign queries. All of this is possible in polynomial time, because ΠM is efficiently generatable and the
algorithms of S obviously need to be efficient. Therefore, TimeNM(κ) = TimeMR(κ) + poly(κ) as claimed.
�
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