45,116 research outputs found

    Hierarchical Attention Network for Visually-aware Food Recommendation

    Full text link
    Food recommender systems play an important role in assisting users to identify the desired food to eat. Deciding what food to eat is a complex and multi-faceted process, which is influenced by many factors such as the ingredients, appearance of the recipe, the user's personal preference on food, and various contexts like what had been eaten in the past meals. In this work, we formulate the food recommendation problem as predicting user preference on recipes based on three key factors that determine a user's choice on food, namely, 1) the user's (and other users') history; 2) the ingredients of a recipe; and 3) the descriptive image of a recipe. To address this challenging problem, we develop a dedicated neural network based solution Hierarchical Attention based Food Recommendation (HAFR) which is capable of: 1) capturing the collaborative filtering effect like what similar users tend to eat; 2) inferring a user's preference at the ingredient level; and 3) learning user preference from the recipe's visual images. To evaluate our proposed method, we construct a large-scale dataset consisting of millions of ratings from AllRecipes.com. Extensive experiments show that our method outperforms several competing recommender solutions like Factorization Machine and Visual Bayesian Personalized Ranking with an average improvement of 12%, offering promising results in predicting user preference for food. Codes and dataset will be released upon acceptance

    Organic feed makes the immune system more alert (Summary)

    Get PDF
    Most studies on organic food are dealing with differences in nutrient contents of organic versus conventional products. Much less studies have focussed on potential differences in health effects. The presented study is the first experimental study in the Netherlands in which the effects of feed derived from organic or conventional origin were studied, using animals as a model for humans. Two generations of chicken as well as the feed, especially composed out of organically or conventionally produced ingredients, were extensively studied, using several most modern techniques. Various differences in nutrient content were observed in the ingredients. Most consistent finding was a difference in protein content, resulting on average in a 10% higher protein content in the conventionally produced feeds. Results also revealed biomarkers for future research: body weight gain, responsiveness of the immune system, metabolic reactions in blood and liver and genetic regulation in the gut. With these biomarkers, clear differences between the two groups of chicken were found. For research on health effects in humans, which is the ultimate goal, it is important to have appropriate biomarkers which can measure health effects in healthy individuals

    Chitin and lignin. Natural ingredients from waste materials to make innovative and healthy products for humans and plant

    Get PDF
    In a globalized world, plants are continually cut to obtain free land for intensive farming without remembering their important function in the planet ecosystem. They produce oxygen eliminating the carbon dioxide excess, contributing to reduce the pollution thus giving a great support to our health. According to the World Health Organization (WHO), air pollution -both outdoor and indoor- is nowadays "the biggest environmental risk to health carrying responsibility for about one in every nine deaths" (WHO, 2016). Outdoor pollution alone, in fact, kills around 3 million people each year. At this purpose however, it is necessary to remember that indoor emission of nanoparticles (NP) represent 50-80% of human exposure, calculated from 10.000 to 249.000 NP/mL air-while in polluted air NP are from ~10.000 to 50.000 NP/mL (Nohynek, 2011). Thus, there is a strict necessity "to consider air pollution as a global health priority in the sustainable development agenda" (WHO, 2016). Moreover, plants, multicellular organisms, as well as humans have evolved several mechanisms of defense and sensor systems to detect danger and prevent entry of most foreign material (Janeway et al, 2001). The sensors can direct and assist the host defenses by the use of specialized cells that ingest and digest foreign material. This protective non-specific method is called innate immune system, also connected with certain specific molecular patterns recognition associated with invading microbes or tissue damage (Nurnberger et al., 2004). In addition to innate immunity, vertebrates have evolved an adaptive immune system that relies on many antigen receptors, expressed by specialized immune cells. Unlike vertebrates, plants lack mobile defender cells and respond to infection by a two-branched immune system (Jones et al., 2006). The first branch recognizes and responds to all the common microbial molecules, while the second responds to pathogen virulence factors only. However, both plants and mammals have as first-line defense a barrier that, separating and shielding the interior of the body from the surrounding environment, represents the initial obstacle to be overcame from any pathogenic microorganisms. This barrier not only provides a physical separation, but releases also substances with antimicrobial properties. Moreover, when the first-line barrier has been breached, sensor systems are activated to give information to other components of the host defenses. Thus, while mammals activate, for example, the toll-like receptors capable to recognize families of compounds unique to microbes, plants release specialized compounds known as elicitors, signaling molecules able to induce their defense systems (Trouvelot et al., 2014). Examples of common ingredients, used from both plant and mammal as elicitors and defense-related compounds, are chitin and lignin. In this work, these materials will be briefly reviewed and results of chitin nanofibrils production and usage is reported. Finally, possible usage of combined chitin-lignin nanofibrils in commercial products will be pointed out

    Robust Management, Risk and the Ecosystem Approach to Fisheries

    Get PDF
    Biodiversity has not been a prominent consideration in conventional fishery management, even though biological concerns and the concept of "sustainability" are long-established in fisheries. This is because traditionally, the focus of management has been on determining the harvest of fish that can be taken as a "sustainable yield" and then restricting the catch of fish to within this limit. Typically missing from the analysis have been (1) interactions of fishing with the broader marine ecosystem, and (2) interactions of the fishery with the broader coastal economy and coastal communities. Accordingly, there is a need to move toward a "big picture" perspective, a "Fishery System Approach", in which fisheries are understood and managed in the context of marine ecosystems and coastal human systems, thereby addressing the needs of both biodiversity conservation and integrated management of multiple ocean uses. This paper elaborates on these themes, exploring the duality of the Ecosystem Approach and the Livelihood Approach as means to move toward sustainable, resilient fishery systems, ones in which biodiversity values can be more fully included

    Evaluating Resource Use in Low Input Systems

    Get PDF
    Work package 5.1 aims at the evaluation of existing accreditation mechanisms and economic approaches related to low-input livestock farming systems and thus of sustainable development processes through a multi-criteria evaluation of the public goods delivered by different production systems, management techniques and breeding innovations. To this end, we are conducting a comparative analysis of approaches to low-input livestock production, based on the multi-criteria assessment of the performances of production schemes in the delivery of public goods

    Bioengineered Textiles and Nonwovens – the convergence of bio-miniaturisation and electroactive conductive polymers for assistive healthcare, portable power and design-led wearable technology

    Get PDF
    Today, there is an opportunity to bring together creative design activities to exploit the responsive and adaptive ‘smart’ materials that are a result of rapid development in electro, photo active polymers or OFEDs (organic thin film electronic devices), bio-responsive hydrogels, integrated into MEMS/NEMS devices and systems respectively. Some of these integrated systems are summarised in this paper, highlighting their use to create enhanced functionality in textiles, fabrics and non-woven large area thin films. By understanding the characteristics and properties of OFEDs and bio polymers and how they can be transformed into implementable physical forms, innovative products and services can be developed, with wide implications. The paper outlines some of these opportunities and applications, in particular, an ambient living platform, dealing with human centred needs, of people at work, people at home and people at play. The innovative design affords the accelerated development of intelligent materials (interactive, responsive and adaptive) for a new product & service design landscape, encompassing assistive healthcare (smart bandages and digital theranostics), ambient living, renewable energy (organic PV and solar textiles), interactive consumer products, interactive personal & beauty care (e-Scent) and a more intelligent built environment

    Towards a Framework for Managing Inconsistencies in Systems of Systems

    Get PDF
    The growth in the complexity of software systems has led to a proliferation of systems that have been created independently to provide specific functions, such as activity tracking, household energy management or personal nutrition assistance. The runtime composition of these individual systems into Systems of Systems (SoSs) enables support for more sophisticated functionality that cannot be provided by individual constituent systems on their own. However, in order to realize the benefits of these functionalities it is necessary to address a number of challenges associated with SoSs, including, but not limited to, operational and managerial independence, geographic distribution of participating systems, evolutionary development, and emergent conflicting behavior that can occur due interactions between the requirements of the participating systems. In this paper, we present a framework for conflict management in SoSs. The management of conflicting requirements involves four steps, namely (a) overlap detection, (b) conflict identification, (c) conflict diagnosis, and (d) conflict resolution based on the use of a utility function. The framework uses a Monitor-Analyze-Plan- Execute- Knowledge (MAPE-K) architectural pattern. In order to illustrate the work, we use an example SoS ecosystem designed to support food security at different levels of granularity

    Identifying Conflicting Requirements in Systems of Systems

    Get PDF
    A System of Systems (SoS) is an arrangement of useful and independent sub-systems, which are integrated into a larger system. Examples are found in transport systems, nutritional systems, smart homes and smart cities. The composition of component sub-systems into an SoS enables support for complex functionalities that cannot be provided by individual sub-systems on their own. However, to realize the benefits of these functionalities it is necessary to address several software engineering challenges including, but not limited to, the specification, design, construction, deployment, and management of an SoS. The various component sub-systems in an SoS environment are often concerned with distinct domains; are developed by different stake-holders under different circumstances and time; provide distinct functionalities; and are used by different stakeholders, which allow for the existence of conflicting requirements. In this paper, we present a framework to support management of emerging conflicting requirements in an SoS. In particular, we describe an approach to support identification of conflicts between resource-based requirements (i.e. requirements concerned with the consumption of different resources). In order to illustrate and evaluate the work, we use an example of a pilot study of an IoT SoS ecosystem designed to support food security at different levels of granularity, namely individuals, groups, cities, and nations
    corecore