1,876,275 research outputs found

    Particle Efficient Importance Sampling

    Full text link
    The efficient importance sampling (EIS) method is a general principle for the numerical evaluation of high-dimensional integrals that uses the sequential structure of target integrands to build variance minimising importance samplers. Despite a number of successful applications in high dimensions, it is well known that importance sampling strategies are subject to an exponential growth in variance as the dimension of the integration increases. We solve this problem by recognising that the EIS framework has an offline sequential Monte Carlo interpretation. The particle EIS method is based on non-standard resampling weights that take into account the look-ahead construction of the importance sampler. We apply the method for a range of univariate and bivariate stochastic volatility specifications. We also develop a new application of the EIS approach to state space models with Student's t state innovations. Our results show that the particle EIS method strongly outperforms both the standard EIS method and particle filters for likelihood evaluation in high dimensions. Moreover, the ratio between the variances of the particle EIS and particle filter methods remains stable as the time series dimension increases. We illustrate the efficiency of the method for Bayesian inference using the particle marginal Metropolis-Hastings and importance sampling squared algorithms

    Stochastic Optimization with Importance Sampling

    Full text link
    Uniform sampling of training data has been commonly used in traditional stochastic optimization algorithms such as Proximal Stochastic Gradient Descent (prox-SGD) and Proximal Stochastic Dual Coordinate Ascent (prox-SDCA). Although uniform sampling can guarantee that the sampled stochastic quantity is an unbiased estimate of the corresponding true quantity, the resulting estimator may have a rather high variance, which negatively affects the convergence of the underlying optimization procedure. In this paper we study stochastic optimization with importance sampling, which improves the convergence rate by reducing the stochastic variance. Specifically, we study prox-SGD (actually, stochastic mirror descent) with importance sampling and prox-SDCA with importance sampling. For prox-SGD, instead of adopting uniform sampling throughout the training process, the proposed algorithm employs importance sampling to minimize the variance of the stochastic gradient. For prox-SDCA, the proposed importance sampling scheme aims to achieve higher expected dual value at each dual coordinate ascent step. We provide extensive theoretical analysis to show that the convergence rates with the proposed importance sampling methods can be significantly improved under suitable conditions both for prox-SGD and for prox-SDCA. Experiments are provided to verify the theoretical analysis.Comment: 29 page

    Importance Sampling for Dispersion-managed Solitons

    Get PDF
    The dispersion-managed nonlinear Schrödinger (DMNLS) equation governs the long-term dynamics of systems which are subject to large and rapid dispersion variations. We present a method to study large, noise-induced amplitude and phase perturbations of dispersion-managed solitons. The method is based on the use of importance sampling to bias Monte Carlo simulations toward regions of state space where rare events of interest—large phase or amplitude variations—are most likely to occur. Implementing the method thus involves solving two separate problems: finding the most likely noise realizations that produce a small change in the soliton parameters, and finding the most likely way that these small changes should be distributed in order to create a large, sought-after amplitude or phase change. Both steps are formulated and solved in terms of a variational problem. In addition, the first step makes use of the results of perturbation theory for dispersion-managed systems recently developed by the authors. We demonstrate this method by reconstructing the probability density function of amplitude and phase deviations of noise-perturbed dispersion-managed solitons and comparing the results to those of the original, unaveraged system

    Quantile estimation with adaptive importance sampling

    Full text link
    We introduce new quantile estimators with adaptive importance sampling. The adaptive estimators are based on weighted samples that are neither independent nor identically distributed. Using a new law of iterated logarithm for martingales, we prove the convergence of the adaptive quantile estimators for general distributions with nonunique quantiles thereby extending the work of Feldman and Tucker [Ann. Math. Statist. 37 (1996) 451--457]. We illustrate the algorithm with an example from credit portfolio risk analysis.Comment: Published in at http://dx.doi.org/10.1214/09-AOS745 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Pareto Smoothed Importance Sampling

    Full text link
    Importance weighting is a general way to adjust Monte Carlo integration to account for draws from the wrong distribution, but the resulting estimate can be noisy when the importance ratios have a heavy right tail. This routinely occurs when there are aspects of the target distribution that are not well captured by the approximating distribution, in which case more stable estimates can be obtained by modifying extreme importance ratios. We present a new method for stabilizing importance weights using a generalized Pareto distribution fit to the upper tail of the distribution of the simulated importance ratios. The method, which empirically performs better than existing methods for stabilizing importance sampling estimates, includes stabilized effective sample size estimates, Monte Carlo error estimates and convergence diagnostics.Comment: Major revision: 1) proofs for consistency, finite variance, and asymptotic normality, 2) justification of k<0.7 with theoretical computational complexity analysis, 3) major rewrit

    Faster Coordinate Descent via Adaptive Importance Sampling

    Get PDF
    Coordinate descent methods employ random partial updates of decision variables in order to solve huge-scale convex optimization problems. In this work, we introduce new adaptive rules for the random selection of their updates. By adaptive, we mean that our selection rules are based on the dual residual or the primal-dual gap estimates and can change at each iteration. We theoretically characterize the performance of our selection rules and demonstrate improvements over the state-of-the-art, and extend our theory and algorithms to general convex objectives. Numerical evidence with hinge-loss support vector machines and Lasso confirm that the practice follows the theory.Comment: appearing at AISTATS 201
    corecore