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Importance Sampling for Dispersion-Managed Solitons∗

Elaine T. Spiller† and Gino Biondini‡

Abstract. The dispersion-managed nonlinear Schrödinger (DMNLS) equation governs the long-term dynamics
of systems which are subject to large and rapid dispersion variations. We present a method to study
large, noise-induced amplitude and phase perturbations of dispersion-managed solitons. The method
is based on the use of importance sampling to bias Monte Carlo simulations toward regions of state
space where rare events of interest—large phase or amplitude variations—are most likely to occur.
Implementing the method thus involves solving two separate problems: finding the most likely noise
realizations that produce a small change in the soliton parameters, and finding the most likely way
that these small changes should be distributed in order to create a large, sought-after amplitude or
phase change. Both steps are formulated and solved in terms of a variational problem. In addition,
the first step makes use of the results of perturbation theory for dispersion-managed systems recently
developed by the authors. We demonstrate this method by reconstructing the probability density
function of amplitude and phase deviations of noise-perturbed dispersion-managed solitons and
comparing the results to those of the original, unaveraged system.

Key words. optical fiber communications, photonics, solitons, dispersion management, Monte Carlo methods,
variance reduction techniques, importance sampling

AMS subject classifications. 65C05, 65C30, 78A10, 78A40, 78A48, 90B18
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1. Introduction. Noise is one of the major factors limiting the performance of coherent
optical fiber communication systems [5, 17, 18, 21] as well as certain mode-locked lasers
[22, 31, 41]. In both kinds of systems the noise is typically small compared to the signal,
and so are the noise-induced perturbations to the pulse parameters on average. Those rare
events in which many small noise-induced parameter changes build up coherently, however,
are precisely the ones that are most likely to lead to significant pulse distortion and thus to
system failures. Because optical fiber communication systems and Ti:sapphire femtosecond
lasers are both designed to operate with very high accuracies, failures in these systems result
from the occurrence of unusually large deviations, which makes calculating their error rates
a challenging task. On one hand, direct Monte Carlo (MC) computations of failure rates
are impractical due to the number of samples necessary to obtain a reliable estimate. On
the other hand, analytical estimates are extremely difficult both because the noise couples
nonlinearly to the signal during propagation and because solutions of (unforced) dispersion
managed systems are often only available numerically.

∗Received by the editors June 9, 2009; accepted for publication (in revised form) by B. Sandstede February 22,
2010; published electronically May 21, 2010. This work was partially supported by the National Science Foundation
under grants DMS-0757527 and DMS-0908399.

http://www.siam.org/journals/siads/9-2/76167.html
†Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, WI 53201

(elaine.spiller@marquette.edu).
‡Department of Mathematics, State University of New York, Buffalo, NY 14260 (biondini@buffalo.edu).

432

D
ow

nl
oa

de
d 

02
/2

7/
14

 to
 1

34
.4

8.
15

8.
19

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/siads/9-2/76167.html
mailto:elaine.spiller@marquette.edu
mailto:biondini@buffalo.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IMPORTANCE SAMPLING FOR DISPERSION-MANAGED SOLITONS 433

The effect of noise on systems modeled by the nonlinear Schrödinger (NLS) equation can
be studied using importance sampling (IS) [29, 30, 37, 38, 39]. The idea behind IS is to
sample the noise from a biased distribution that makes the rare events occur more frequently
than would naturally be the case, while simultaneously correcting for the biasing. In order to
successfully implement IS, however, one must bias toward the most likely noise realizations
that lead to system failures. In the above works, this was achieved by taking advantage of
well-known soliton perturbation theory results. No inverse scattering transform exists, how-
ever, for dispersion-managed systems. The response of dispersion-managed solitons subject to
noise was studied in [19, 24, 25, 26, 36]. Here, as in [23], we address this problem by employing
the dispersion-managed NLS (DMNLS) equation, which governs the long-term dynamics of
dispersion-managed optical systems [1, 4, 12]. In [23] we developed a perturbation theory for
dispersion-managed solitons, and we presented some importance-sampled MC (ISMC) simu-
lations for which the choice of biasing was straightforward. Here we first discuss in detail the
methods that are needed for the actual implementation of IS, namely, the precise formulation
of the optimal biasing problem which utilizes the perturbation theory for dispersion-managed
solitons. We then extend the previous results by actually solving the optimal biasing problem
for all of the four dispersion-managed soliton parameters, and we use the results to perform
ISMC numerical simulations to reconstruct the probability density function (PDF) of the final
amplitude as well as the phase of the dispersion-managed solitons subject to noise, in which
case the choice of biasing is nontrivial.

The outline of this work is the following. In section 2 we define more precisely the problem
of interest, we briefly recall how the DMNLS equation arises as a model that describes the long-
term dynamics of dispersion-managed systems, we review the results of perturbation theory
for the DMNLS equation (using this occasion to correct a few typos in the original work), and
we use these results to solve the stochastic differential equations (SDEs) for the evolution of
the soliton parameters under the effect of noise in the limit of small deviations, obtaining the
variance of the noise-induced parameter fluctuations. In section 3 we briefly review the main
idea behind IS and we define the optimal biasing problem, namely, the problem of finding
the most likely noise realizations that produce a given parameter change at the output. In
section 4 we then solve the optimal biasing problem for each of the four soliton parameters.
In section 5 we describe the ISMC simulations of the DMNLS equation perturbed by noise,
and we compare the results to those arising from standard MC simulations of the original,
unaveraged system. Finally, section 6 offers some concluding remarks.

2. Noise-perturbed dispersion-managed systems. The propagation of light pulses in
dispersion-managed optical fiber communication systems [28] and Ti:sapphire femtosecond
lasers [41] is effectively described by an NLS equation with distance-dependent coefficients
plus a source term:

(2.1) i
∂q

∂z
+

1

2
d(z/za)

∂2q

∂t2
+ g(z/za)|q|2q = iS(t, z).

Here z is the dimensionless propagation distance, t is the dimensionless retarded time, q(t, z)
is the dimensionless slowly varying electric field envelope (rescaled to account for loss and
amplification in communication systems), d(z/za) is the local value of dispersion, and g(z/za)D
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434 ELAINE T. SPILLER AND GINO BIONDINI

describes the periodic power variations, which are due to loss and amplification in communi-
cation systems and to the fact that nonlinearity in Ti:sapphire lasers is present only inside the
crystal and not the whole cavity. The choice of d(z/za) is called a dispersion map, and za is the
dispersion map period, which in lasers is the total length of the cavity. The source term S(t, z)
can represent various kinds of perturbations. Here, we will focus on the physically interesting
case where the pulses are subject to spontaneous emission noise, which originates from the
optical amplifiers in communication systems and from the gain medium in Ti:sapphire lasers.
That is, we take (as in [2, 15])

(2.2) S(t, z) =

Na∑
n=1

vn(t)δ(z − nza),

where Na is the number of dispersion maps traversed (and hence the number of amplifiers in
communication systems), za is the dispersion map period, δ(z) is the Dirac delta distribution,
and νn(t) is white Gaussian noise, satisfying

(2.3) E[vn(t)] = 0, E[vn(t)v
∗
n′(t′)] = σ2δ(t − t′)δnn′ ,

where E[ · ] denotes the ensemble average and σ2 is the dimensionless noise variance. That is,
at each amplifier we have the jump condition

(2.4) q(t, nz+a ) = q(t, nz−a ) + σvn(t)

(obtained by integrating (2.1) in a neighborhood of z = nza). The amount of noise added
at each amplifier is typically very small (that is, σ � 1), and therefore the noise-induced
parameter fluctuations are also typically small. On rare occasions, however, many small
contributions accumulate to produce large deviations at the output. Since these events are
by definition rare and atypical, it is very difficult to estimate precisely how frequently they
occur. The problem at hand is to obtain the PDF of the noise-induced parameter fluctuations
at the output.

2.1. The DMNLS equation and its soliton solution. Generically, (2.1) contains large and
rapidly varying terms. As a consequence, the long-term behavior of its solutions is difficult
to study. Fortunately, a different approach is possible. It has been shown that, once the
compression/expansion cycle of the pulse in each dispersion map is properly factored out, the
core pulse shape obeys the DMNLS equation [1, 12]. Namely, in the Fourier domain it is

(2.5) q̂(ω, z) = û(ω, z) e−iC(z/za)ω2/2,

with

(2.6) C(z/za) =

∫ z

0

(
d(z′/za)− d̄

)
dz′,

where d̄ is the average dispersion. Hereafter, f̂(ω, z) denotes the Fourier transform of a generic
function f(t, z), defined as

(2.7) f̂(ω, z) =

∫
f(t, z) e−iωt dt.
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Throughout this work, integrals are complete unless limits are explicitly given. The exponen-
tial factor in (2.5) accounts for the rapid breathing (compression and expansion cycle) of the
pulse, while the slowly varying core û(ω, z) satisfies a perturbed DMNLS equation:

i
∂u

∂z
+

1

2
d̄
∂2u

∂t2
+

∫∫
u(t+t′)u(t+t′′)u

∗
(t+t′+t′′)R(t′t′′) dt

′dt′′ = iS(t, z),(2.8a)

or, in the Fourier domain,

i
∂û

∂z
− 1

2
d̄ω2û+

∫∫
û(ω+ω′)û(ω+ω′′)û

∗
(ω+ω′+ω′′)r(ω′ω′′) dω

′dω′′ = iŜ(ω, z),(2.8b)

where the asterisk denotes complex conjugate, and where for brevity we denote u(t) = u(t, z),
û(ω) = û(ω, z), etc. The kernels R(t′, t′′) and r(ξ) quantify the average nonlinearity over a
dispersion map, mitigated by dispersion management:

(2.9) R(t′t′′) =
∫∫

eiω
′t′+iω′′t′′r(ω′ω′′) dω′dω′′, r(ξ) =

1

(2π)2

∫ 1

0
eiC(ζ)ξg(ζ) dζ.

(A straightforward calculation shows that, like r(ξ), R(·) depends only on the product t′t′′

and not on t′ and t′′ separately.) In what follows we will neglect the periodic power variations
and take g(z) = 1. This is a good approximation in systems with distributed amplification [6].

The DMNLS equation and its solutions depend parametrically on a quantity s, called the
reduced map strength, which quantifies the size of the dispersion variations around the mean.
That is,

(2.10) s =
1

4za

∫ za

0

∣∣d(z/za)− d̄
∣∣ dz.

As s → 0, it is r(ξ) → 1/(2π)2, R(t′t′′) → δ(t)δ(t′), and the DMNLS equation (2.8a) reduces
to the NLS equation with constant coefficients. A special but physically interesting case is
that of a piecewise constant, two-step dispersion map, namely,

(2.11) d(z/za) =

{
d̄+ 2s/(θza), 0 ≤ z < θza,
d̄− 2s/[(1− θ)za], θza ≤ z < 1,

for some 0 < θ < 1. In this case the kernels assume a particularly simple form [1]:

(2.12) r(ξ) =
1

(2π)2
sin sξ

sξ
, R(ξ) =

1

2π|s| ci(ξ/s).

Note that the above definition of map strength s, which is consistent with [1, 3], differs from
another common definition (e.g., cf. [3, 35]). In particular, the map strength as defined here
is only a property of the fiber and does not change with a pulse’s width.

Dispersion-managed solitons are traveling-wave solutions of the DMNLS equation. If

(2.13) uo(t, z; s) = f(t; s) eiλ
2z/2,
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then f̂(ω; s) satisfies the following nonlinear integral equation:

(2.14)
(
λ2 + d̄ω2

)
f̂(ω) = 2

∫∫
f̂(ω+ω′)f̂(ω+ω′′)f̂

∗
(ω+ω′+ω′′)r(ω′ω′′) dω

′dω′′.

Equation (2.14) can be efficiently solved numerically, as discussed in [23]. The invariances of
the DMNLS equation then yield from uo(t, z; s) a four-parameter family of dispersion-managed
solitons:

(2.15) udms(t, z; s) = Af(A(t− T );A2s) eiΘ(t,z)

(where λ = 1 was used without loss of generality), where A and Ω are the dispersion-managed
soliton amplitude and frequency, Θ(t, z) = Ω(t− T ) + Φ is the local phase, and

T (z) = d̄Ωz + to,(2.16a)

Φ(z) = (A2 + d̄Ω2)z/2 + φo(2.16b)

are, respectively, the mean time and the mean phase. (The present definition of Φ differs
from that in [23, 30] and is chosen so that Φ is the phase at the center of the pulse.) It
should be noted that f(t; s) need not necessarily be real and even: one can insert an initial
guess with a nonzero value of phase and mean position and obtain a perfectly valid solution
with nonzero values of T and Φ thanks to the invariances of the integral equation and the
well-known translation properties of Fourier transforms. This property is expedient in the
numerical simulations.

2.2. Perturbation theory for the DMNLS equation. If u(t, z) = udms + w solves the
perturbed DMNLS equation (2.8a) and w = o(udms), then w(t, z) satisfies the perturbed
linearized DMNLS equation

L[w, u] = S(t, z),(2.17a)

where L[w, u] is the linearized DMNLS operator [33]:

L[w, u] =
∂w

∂z
− i

2
d̄
∂2w

∂t2
− 2i

∫∫
u(t+t′′)u

∗
(t+t′+t′′)w(t+t′)R(t′,t′′) dt

′dt′′

− i

∫∫
u(t+t′)u(t+t′′)w

∗
(t+t′+t′′)R(t′,t′′) dt

′dt′′.(2.17b)

The operator L[u, v] admits a nontrivial nullspace (see below), which is related to the invari-
ances of the DMNLS equation, as shown in [23]. Because of the existence of this nontrivial
nullspace, secularities will arise in the solution of the perturbed linearized DMNLS equation
(2.17a). The secular terms correspond to the portions of the noise components that alter the
soliton parameters, as shown in [23]. The parameter changes are found as usual by removing
secular terms, i.e., by requiring that w(t, z) remain bounded in time. This yields [23]

dA

dz
= SA(z),

dΩ

dz
= SΩ(z),

dT

dz
= d̄Ω+ ST (z),(2.18a)

dΦ

dz
=

1

2
(A2 + d̄Ω2) + ΩST (z) + SΦ(z),(2.18b)
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where the source terms are, for Q = A,Ω, T,Φ,

(2.19) SQ(z) = 〈eiΘy
Q
, S〉/〈y

Q
, yQ〉,

and yQ and y
Q
are the neutral modes and their adjoints, as defined below.

In the special case of noise-induced solution perturbations, or of any other changes in the
initial condition of the type

(2.20) u(t, nz+a ) = u(t, nz−a ) + Δun(t),

the induced dispersion-managed soliton parameter changes at each map period are [23]

(2.21) Q(nz+a ) = Q(nz−a ) + ΔQn,

where for Q = A,Ω, T it is

ΔQn =
〈eiΘy

Q
, Δun(t)〉

〈y
Q
, yQ〉(2.22a)

while

ΔΦn =
〈eiΘy

Φ
, Δun(t)〉

〈y
Φ
, yΦ〉 +Ω

〈eiΘy
T
, Δun(t)〉

〈y
Ω
, yΩ〉 ,(2.22b)

and where 〈f, g〉 is the inner product of two functions, defined as

(2.23) 〈f, g〉 = Re

∫
f∗(t)g(t) dt.

Above and throughout this work, yA(t) and yΩ(t) are the neutral eigenmodes, and yT (t)
and yΦ(t) are the generalized eigenmodes of the linearized DMNLS operator around the soliton
solution (2.15) once the exponential phase has been removed (cf. [23] for further details), while
y
A
(t), y

Ω
(t), y

T
(t), and y

Φ
(t) are the corresponding adjoint modes, that is, the modes of the

adjoint linearized DMNLS operator. Explicitly [23],

yΦ = iU, yT = −∂U

∂ξ
, yΩ = iξU, yA =

1

A

(
U + ξ

∂U

∂ξ
+ 2s

∂U

∂s

)
,(2.24a)

y
Φ
=

i

A

(
U + ξ

∂U

∂ξ
+ 2s

∂U

∂s

)
, y

T
=

ξ

A
U, y

Ω
= − i

A

∂U

∂ξ
, y

A
= U,(2.24b)

where ξ = t − T (z), and U(t, z) = u(t, z) e−iΘ = Af(Aξ(t, z);A2s) is the envelope of the
dispersion-managed soliton solution (2.15). These modes and adjoint modes are biorthogonal,
that is,

(2.25) 〈y
Q
, yQ′〉 = 〈y

Q
, yQ〉 δQQ′ ,

where δQQ′ is the Kronecker delta, and they form a basis of the nullspace of the linearized
DMNLS operator. (Note that, unlike the NLS equation, the DMNLS equation also admits
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Figure 1. Norms and inner products of the linear modes and their adjoints as a function of the soliton
amplitude for different values of map strength: s = 0 (black), s = 1 (blue), s = 2 (cyan), s = 4 (magenta), and
s = 10 (red). For the case s = 0, corresponding to the constant dispersion case (NLS equation), these functions
are known explicitly; cf. (2.28). Note also that ‖yΦ‖2 = ‖y

A
‖2 = E(A; s) provides a map that will be useful in

the numerical simulations.

internal modes [8, 20, 40]. These, however, do not play a role in our discussion.) All of
these modes are generated using the symmetries of DMNLS, and all of these results reduce
to the standard perturbation theory for NLS when s = 0. When s �= 0, however, the inner
products depend on both the soliton amplitude and the map strength, as shown in Figure 1.
In particular, it is [23]

(2.26) 〈y
A
, yA〉 = 〈y

Φ
, yΦ〉 =

(
1

2
+ s

∂

∂s

)
E/A, 〈y

T
, yT 〉 = 〈y

Ω
, yΩ〉 = 1

2
E/A,
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where E(A; s) = ‖u‖2 =
∫ |u(t, z)|2 dt is the pulse energy. Figure 1 shows the above norms

and inner products for s �= 0 as a function of A for various values of map strength. For the
NLS equation (that is, when s = 0), it is E = 2A, so the above modes and adjoint modes
become orthonormal:

(2.27) 〈y
A
, yA〉 = 〈y

Ω
, yΩ〉 = 〈y

T
, yT 〉 = 〈y

Φ
, yΦ〉 = 1.

The norms of the linear modes and their adjoints also take on a simple form for the NLS
equation:

(2.28) ‖yA‖2 = (12+π2)/(18A), ‖y
A
‖2 = 2A, ‖yΩ‖2 = π2/(6A), ‖y

Ω
‖2 = 2A/3.

The remaining norms are obtained from these via (2.24).

As discussed in [23], the linear modes are related to changes in the solution parameters,
and their norms and inner products will be important in solving the optimal biasing problem
for IS, which we will turn to in sections 3 and 4.

2.3. Noise-induced changes and soliton parameter variances. When the perturbing
term S(t, z) in (2.8a) represents amplifier noise, (2.18) becomes a system of nonlinear SDEs
for the evolution of the dispersion-managed soliton parameters in the presence of noise. Recall
that the source terms in those SDEs are given by (2.19). For the present discussion (as well as
in section 4), we employ a continuum approximation of the noise. That is, we consider S(t, z)
to be a Gaussian white-noise process with zero mean and autocorrelation function

(2.29) E[S(t, z)S∗(t, z)] = σ2 δ(t− t′)δ(z − z′).

(An alternative treatment that preserves the discreteness of the amplifier locations is described
in [30] for the NLS equation. But note also that for systems with distributed amplification
noise is indeed added continuously throughout the transmission line.) Since the adjoint modes
are orthogonal, the sources SQ(z) are independent white-noise processes, with autocorrelation
function

(2.30) E[SQ(z)S
∗
Q′(z′)] = σ2

Qδ(z − z′),

where

(2.31) σ2
Q = var[SQ(z)] = E

[〈eiΘy
Q
, S〉2/〈y

Q
, yQ〉2

]
= σ2‖y

Q
‖2/〈y

Q
, yQ〉2.

In the case of the NLS equation, (2.27) and (2.28) yield these variances explicitly as

(2.32) σ2
A/σ

2 = 2A, σ2
Ω/σ

2 = 2A/3, σ2
T /σ

2 = π2/(6A3), σ2
Φ/σ

2 = (12 + π2)/(18A).

For all values of s, these variances depend on the soliton amplitude A (as well as on the map
strength s) and therefore on the propagation distance z. As a result, it is not possible to
integrate the SDEs (2.18b) in closed form, even in the case of constant dispersion.
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In those situations where the amplitude deviations are not large, one can approximate the
variances σ2

A, . . . , σ
2
Φ of the source terms as constant. Equations (2.18b) can then be integrated

exactly, to obtain

A(z) = Ao +WA(z), Ω(z) = Ωo +WΩ(z),(2.33a)

T (z) = To +

∫ z

0
d̄Ω(z′) dz′ +WT (z),(2.33b)

Φ(z) =
1

2

∫ z

0

(
A2(z′) + d̄Ω2(z′)

)
dz′ +

∫ z

0
Ω(z′)ST (z

′) dz′ +WΦ(z),(2.33c)

where, for Q = A,Ω, T,Φ,

WQ(z) =

∫ z

0
SQ(z

′) dz′(2.34a)

is a Wiener process with zero mean and autocorrelation function

E[WQ(z)WQ′(z′)] = σ2
QδQQ′ min(z, z′).(2.34b)

The mean values of the soliton parameters at the output are then

E[A(L)] = Ao, E[Ω(L)] = Ωo, E[T (L)] = To + d̄ΩoL,(2.35a)

E[Φ(L)] =
1

2
(A2

o + d̄Ω2
o)L+

1

4
(σ2

A + d̄σ2
Ω)L

2.(2.35b)

Tedious but straightforward stochastic calculus [32] also yields the variances of the noise-
perturbed output soliton parameters as

var[A(L)] = σ2
AL, var[Ω(L)] = σ2

ΩL, var[T (L)] = σ2
TL+

1

3
d̄σ2

ΩL
3,(2.36a)

var[Φ(L)] = (σ2
Φ + d̄Ω2

oσ
2
Ω)L+ d̄Ωoσ

2
Tσ

2
Ω L2 +

1

3
(A2

oσ
2
A + d̄Ω2

oσ
2
Ω)L

3 +
1

12
(σ4

A + d̄2σ4
Ω)L

4.

(2.36b)

Note that, unlike the other soliton parameters, the mean phase is affected by the noise. The
cubic dependence of timing jitter on distance (which arises as a result of the coupling between
carrier frequency and group velocity) in the third equation of (2.36a) is of course the well-
known Gordon–Haus jitter [13]. Similarly, the cubic dependence of the phase jitter on distance
(due to the Kerr effect and Galilean invariance) is called the Gordon–Mollenauer jitter [14].
Note that additional contributions are present for the phase variance, which also happens for
NLS [14], but the term is quadratic in the noise variance.

Remarkably, these results are formally identical to those for the NLS equation. In partic-
ular, (2.36b) reduces to the results of [16] when Ωo = 0. Here, however, we show that they
also hold for s �= 0. Moreover, even though the form of (2.36) is the same for s = 0 and s �= 0,
the variances σ2

Q of the source terms vary with s, as can be seen from Figure 1 and (2.31).
Also, the functional dependence of the variances on the soliton amplitude is dramatically dif-
ferent because of the different dependence of the norms and inner products on the amplitude,
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as discussed earlier. As is the case for the NLS equation, the knowledge of variances as a
function of distance is not sufficient to accurately predict the frequency of the rare events,
as discussed in detail in [30]. Finally, we emphasize that the SDEs (2.18b) were derived by
applying perturbation theory and using the Stratonovich definition of calculus. This is correct
only if one is dealing with the Stratonovich interpretation of the noise-driven NLS equation
(2.8a). If one wants to study a nonanticipatory noise process, however, the Itô formulation is
required [9].

3. IS for the DMNLS equation. We now discuss how the results of section 2 can be
used to guide the implementation of IS for the DMNLS equation. For simplicity we set d̄ = 1
throughout the rest of this work.

3.1. IS and the optimal biasing problem. The idea behind IS is straightforward. In
order to calculate the probability of a desired rare event, one samples the noise from a biased
distribution that makes the rare events occur more frequently than would naturally be the
case, and simultaneously corrects for the biasing.

Consider a set of random variables X = (x1, . . . , xN ) distributed according to a joint
probability distribution p(X). The probability P that a function y(X) falls into a desired
range Yd can be expressed via the multidimensional integral

P = P[y ∈ Yd] = E[I(y(X))] =

∫
I(y(x))p(x)(dx),(3.1a)

where the indicator function I(y) equals 1 when y ∈ Yd and 0 otherwise, and (dx) is the
volume element in R

N . When evaluation of the integral is impossible (as it often is due to
the large dimensionality of sample space and the complicated form of the map from X to y),
one needs to resort to numerical methods. An unbiased estimator for P can be constructed
via MC quadrature as

P̂mc =
1

M

M∑
m=1

I(y(Xm)),(3.1b)

where the M samples Xm are drawn from the distribution p(X). If P is very small, however,
an unreasonable number of samples are necessary to produce any events for which y ∈ Yd,
let alone enough to accurately approximate the integral. However, one can rewrite (3.1) as
follows:

P[y ∈ Yd] =

∫
I(y(x))L(x)p∗(x)dx,(3.2a)

P̂ismc =
1

M

M∑
m=1

I(y(X∗,m))L(X∗,m),(3.2b)

where the samples X∗,m are now drawn from the biasing distribution p∗(X), and where the
quantity L(X) = p(X)/p∗(X) is the likelihood ratio. Note that if one sampled from a biased
distribution but did not correct with the likelihood ratio, one would be “counting the observed
events too much.” When a large range of values of the quantity of interest is desired, it might
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be necessary to use several biasing distributions. The individual samples can then be efficiently
combined using a practice called multiple importance sampling [7].

When appropriate biasing distributions are selected, and the contributions of the individ-
ual samples are corrected with the likelihood ratios, ISMC simulations can accurately estimate
the probability of the rare events in exam with a small fraction of the number of samples that
standard MC methods would require. In order for IS to work, however, the biasing distri-
bution p∗(X) must preferentially concentrate the MC samples around the most likely system
realizations that lead to the rare events of interest. In our case the random variables are the
noise components added after each dispersion map period. Thus, to successfully apply IS we
must find the most likely noise realizations that lead to a desired value of the soliton param-
eters at the output. We approach this problem by decomposing it into two logically distinct
steps: (i) finding the most likely noise realizations that produce a given parameter change at
each amplifier; and (ii) finding the most likely way in which individual parameter changes at
each amplifier combine to produce a total change at the output. The two-step approach is
justified by the fact that the noise at different amplifiers is statically independent.

3.2. Biasing at a single amplifier. Recall that at the nth amplifier a zero-mean, delta-
correlated white-noise process, νn(t), is added to the signal as a consequence of spontaneous
emission. On average, this noise does not introduce parameter changes at a single amplifier.
However, we can induce an average parameter change by biasing the mean of this process.
To so do, we begin by considering a generic perturbation to the solution at the nth amplifier,
bn(t). Recall that the noise-induced change to a soliton parameter Q (with Q = A,Ω, T,Φ) is
found by taking the projection of the perturbation onto the adjoint mode of the linear DMNLS
operator associated with Q (and normalized by the norm of that adjoint mode). That is, if
u(t, nz+a ) = u(t, nz−a ) + bn(t), the change to parameter Q due to the perturbation bn(t) is
given by

(3.3) ΔQn = Re

∫
y∗
Q
bn(t) dt

/ ∫ |y
Q
|2 dt.

(For the purposes of the present discussion it is convenient to redefine y′
Φ

= y
Φ
+ Ω y

T
.)

If bn(t) is an unbiased, zero-mean process, it is obviously E[ΔQn] = 0; but different noise
realizations lead to different noise-induced parameter changes. The problem of finding the
optimal biasing at each amplifier is to find the most likely noise realization subject to the
constraint of achieving, on average, a desired parameter change at that amplifier. In other
words, given a specific parameter change ΔQn at the nth amplifier (with Q = A,Ω, T,Φ),
what is the form of bn(t) that is most likely to produce this prescribed change? (Once these
bn(t) have been found, one can then use them to bias the MC simulations by concentrating
the random samples νn(t) around these deterministic values.) For white Gaussian noise,
maximizing its probability amounts to minimizing the negative of the log-likelihood, i.e., the
negative of the argument of the exponential in the noise PDF. That is, we need to minimize
the L2-norm

(3.4) ‖bn(t)‖2 =
∫

|bn(t)|2 dt
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subject to achieving the desired parameter change ΔQn, which is given by (3.3). (Keep in
mind that the question of how the ΔQn’s themselves should be prescribed is a separate issue
that we will address at length in section 4.) One can formulate this as a variational problem
as in [30]. That is, we consider the functional

(3.5) J [bn, b
∗
n] =

∫
|bn(t)|2 dt+ μ

(
ΔQ− Re

∫
y∗
Q
bn(t) dt

)
,

which depends on the biasing function bn(t) and on the Lagrange multiplier μ. The minimum
of this functional yields the optimal biasing, that is, the most likely noise realization that
satisfies the parameter constraint (3.3). Taking the functional derivative of J [ ] with respect
to bn and setting it to zero yields bn(t) = μy

Q
(t). The value of μ can be determined by

taking the inner product of bn with the adjoint eigenmode y
Q

and then simplifying with the

constraint, which yields μ = ΔQn/‖yQ‖2. Combining the two results, we then obtain the

optimal biasing function as

(3.6) bn(t) = ΔQn

Re
∫
y∗
Q
yQ dt∫ |y

Q
|2 dt y

Q
.

We emphasize that the above calculation and, therefore, the optimal biasing function are
completely deterministic. Note also that, even though adding a noise component along the
eigenmode associated with parameter Q is the cleanest way to change that parameter (that is,
the way to obtain a prescribed ΔQn without also adding radiation to the signal), the optimal
way to bias the noise in order to obtain a prescribed parameter change is to add noise along
the adjoint eigenmode. In other words, the most likely noise realization that produces that
change is proportional to the adjoint mode [23]. For the constant dispersion case, this was
first reported in [29]. Notice, however, that the coefficient of proportionality is scaled by the
norm of the adjoint mode. This norm is unity in the constant dispersion case but varies with
amplitude in the dispersion-managed case, as is demonstrated in Figure 1.

4. Biasing across all amplifiers. We now address the following question: how should one
distribute the bias for the soliton parameters among all amplifiers in order to achieve a specified
parameter change at the output? In other words, what is the most likely set of individual
parameter changes {ΔAn,ΔΩn,ΔTn,ΔΦn}Na

n=1 that realizes a given value of ΔQtarget (with
Q equal to A, Ω, T , or Φ, as before) at the output?

4.1. Biasing across all amplifiers for amplitude changes. Here we seek to minimize how
much we bias the noise over all amplifiers to achieve a given output amplitude change. We
begin by examining the amplitude evolution from one amplifier to the next, namely,

(4.1) An+1 = An +ΔAn+1.

The results of section 3.2 yield the most likely noise realization that achieves a given amplitude
change at a single amplifier as

(4.2) bn =
〈yA, yA〉
‖y

A
‖2 ΔAn yAn

.
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Recall that the norms and inner products of the linear modes depend on the soliton amplitude
(cf. Figure 1) and therefore also indirectly on distance. At each amplifier, we will be biasing the
mean of the white Gaussian noise with bn according to (4.2), and our goal is to maximize the
probability of achieving a given amplitude at the output. It should be clear that maximizing
this probability is equivalent to minimizing the sum of the L2-norm of the biasing function
over all amplifiers. That is, we need to minimize the sum

(4.3)

Na∑
n=1

‖bn‖2 =
Na∑
n=1

1

σ2
A

|ΔAn|2

subject to the constraint

(4.4)

Na∑
n=1

ΔAn = Atarget −Ao,

where σ2
A is given by (2.31). To solve this problem we consider a continuum approximation.

That is, we replace (4.1) by the first equation of (2.18) with S(t, z) = b(t, z), and b(t, z) given
by the continuum analogue of (4.2); that is,

(4.5) b(t, z) =
〈yA, yA〉
‖y

A
‖2 y

A
(t) Ȧ.

We thus need to find a function A(z) that minimizes the continuum limit of (4.3). That is,
we seek to minimize the integral from z = 0 to z = L of the L2-norm of b(t, z), namely, the
functional

(4.6) J [A] =

∫ L

0

1

σ2
A

Ȧ2 dz,

subject to the fixed boundary conditions A(0) = Ao and A(L) = Atarget. Hereafter the dot
will denote total differentiation with respect to z, and L the total transmission distance. After
some straightforward algebra, the Euler–Lagrange equation associated with J becomes

2Ä
1

σ2
A

+ Ȧ2 ∂

∂A

(
1

σ2
A

)
= 0,

which is readily integrated to give

(4.7) Ȧ = c σA,

where c is an integration constant which determines the total amount of biasing being applied
and thereby the value of the amplitude at the output.

One can now integrate (4.7) to find the optimal biasing path A(z) that realizes a desired
amplitude at the output. Once the optimal amplitude path A(z) has been obtained as a
function of distance, one can then calculate ΔAn, which was the only unknown in the optimal
biasing perturbation bn as given in (4.2). Note, however, that it is not actually necessary to
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Figure 2. Left: Optimal paths for the amplitude for dispersion-managed solitons to obtain large (positive
and negative) deviations at L = 1, computed for the same amount of total noise norm and for different values
of map strength: s = 0 (black), s = 1 (blue), s = 4 (magenta), and s = 10 (red). The dashed line shows the
unperturbed amplitude. Right: The output value of the amplitude as a function of the total noise norm for the
same values of map strength as before.

obtain A(z) to find the optimal biasing function, since once Ȧ is determined via (4.7), the
optimal biasing b(t, z) in the continuum approximation is obtained via (4.5), and the optimal
biasing bn(t) in the discrete case is then approximated by taking ΔAn = Ȧ za. On the other
hand, integrating (4.7) is necessary to explicitly connect the biasing strength to the final value
of the amplitude, for which it is necessary to explicitly determine the integration constant c
in terms of the given boundary conditions.

Equation (4.7) can be integrated explicitly in the special case of the NLS equation (that
is, in the case of constant dispersion, s = 0). In this case, use of (2.32) reduces (4.7) to
Ȧ = c

√
A, which is trivially integrated to

(4.8) Anls(z) =
[(√

Atarget −
√

Ao

)
z/L+

√
Ao

]2
.

When s �= 0, the functional dependence of σA on A is not known, and therefore it is not
possible to integrate (4.7) analytically. Since we have numerical expressions for the norms and
inner products, however, we can proceed by numerically integrating Ȧ, obtaining an expression
for z = z(A), and then inverting this expression to find the optimal biasing path. Such paths
are shown in Figure 2 for several values of reduced map strength.

Another case in which (4.7) can be integrated exactly is the large-s limit. As can be seen
from Figure 1, 〈yA, yA〉 is (to a good approximation) linear in A, while for large values of s

‖y
A
‖2 is approximately quadratic in A. Since σ2

A is proportional to ‖y
A
‖2/〈y

A
, yA〉2, for large

values of s (4.7) is approximated by Ȧ ∝ σ2
A = const. This means that the optimal path to

reach a given target value of amplitude is for the amplitude to increase/decrease linearly. This
justifies the use of a constant biasing strength in [23]. Indeed, it should be clear from Figure 2
that the optimal amplitude paths are very nearly linear for almost all nonzero values of map
strength. This further justifies the use of an equal biasing distribution among amplifiers.
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4.2. Biasing across all amplifiers for frequency changes. The search for larger-than-
normal frequency changes is perhaps the simplest of the four cases. Recall that the frequency
offset changes according to

(4.9) Ωn+1 = Ωn +ΔΩn+1,

and thus the setup for the optimal frequency biasing problem quite closely follows that of the
optimal amplitude biasing problem. As before, (3.6) implies that the optimal biasing function
for the frequency at a single amplifier is

(4.10) bn =
〈yΩ, yΩ〉
‖y

Ω
‖2 ΔΩn yΩn

.

Again we consider the continuum limit, and we seek a function Ω(z) that minimizes the
functional

(4.11) J [Ω] =

∫ L

0

1

σ2
Ω

Ω̇2 dz,

with σ2
Ω as before, subject to the fixed boundary conditions Ω(0) = 0 and Ω(L) = Ωtarget. The

Euler–Lagrange equation associated to this functional is trivially integrated to give Ω̇ = c σ2
Ω,

where c is an integration constant. Even though σΩ depends on the A, it is independent of Ω,
and therefore it is constant to first order in the perturbation expansion. We can therefore
integrate trivially and use the boundary conditions Ω(0) = 0 and Ω(L) = Ωtarget to obtain
c = Ωtarget/σ

2
Ω, implying

(4.12) Ω(z) = Ωtarget z/L.

That is, the optimal way to achieve a given target value of frequency is to divide the total
change equally among all amplifiers. In the discrete case, we have ΔΩn = Ωtarget/N . Since the
result is identical to the NLS case [29, 30], we will forgo any further discussion of frequency
biasing in the remainder of this work.

4.3. Biasing across all amplifiers for timing changes. The setup for the optimal biasing
problem in the case of large timing changes differs from the cases of amplitude and frequency
changes because changes in the pulse timing are induced both by direct timing jitter and by
frequency-induced timing jitter via the coupling between carrier frequency and group velocity
(cf. the third equation of (2.18)). Of course, this is the well-known Gordon–Haus effect [13].

From an amplifier to the next amplifier the pulse timing evolves as

(4.13) Ωn+1 = Ωn +ΔΩn+1, Tn+1 = Tn +Ωnza +ΔTn+1.

Thus we must bias to induce both timing and frequency changes at each amplifier. Owing
to (3.6) and the orthogonality of the modes, the most likely noise realization to obtain given
simultaneous changes in both the frequency and the timing is then

(4.14) bn+1 =
〈yΩ, yΩ〉
‖y

Ω
‖2 ΔΩn+1 yΩn

+
〈yT , yT 〉
‖y

T
‖2 ΔTn+1 yTn

.
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After again taking the continuum limit and imposing the evolution equations for the soliton
parameters (the second and third equations of (2.18)) as constraints, we now obtain

(4.15) b(t, z) =
〈yΩ, yΩ〉
‖y

Ω
‖2 Ω̇ y

Ω
+

〈yT , yT 〉
‖y

T
‖2 (Ṫ − Ω) y

Tn
.

Correspondingly, our optimization problem is

(4.16) J [Ω, T ] =

∫ L

0

[
1

σ2
Ω

Ω̇2 +
1

σ2
T

(
Ṫ − Ω

)2]
dz.

Importantly, unlike the previous cases, the direct timing biasing ΔTn+1 is not given by Ṫ za,
but rather by (Ṫ −Ω) za. This is because the ODE for dT/dz has a deterministic part (cf. the
third equation of (2.18)).

The Euler–Lagrange equations associated with T and Ω are, respectively,

d

dz

[
1

σ2
T

(Ṫ − Ω)

]
= 0,(4.17a)

d

dz

[
1

σ2
Ω

Ω̇

]
+

1

σ2
T

(Ṫ − Ω) = 0.(4.17b)

As before, neglecting amplitude changes in the optimal trajectory, the norms and inner prod-
ucts in σΩ and σT are constants of the motion. As a result, we can easily integrate the first
equation of (4.17) to give

Ṫ − Ω = c,(4.18a)

where c is an integration constant. Substituting (4.18a) into the second equation of (4.17),
integrating twice, and using the boundary conditions Ω(0) = 0 and Ω̇(L) = 0 then yields,
respectively,

Ω̇ = c
σ2
Ω

σ2
T

(L− z)(4.18b)

and

Ω(z) = c
σ2
Ω

σ2
T

(Lz − z2/2).(4.19a)

(Note that the boundary condition Ω̇(L) = 0 is natural because a frequency change at z = L
would not result in an additional timing change, since frequency-induced timing changes can
only accumulate with distance.) One can now substitute (4.19a) back into (4.18a), integrate
the latter, and impose the boundary conditions T (0) = 0 and T (L) = Ttarget, obtaining

T (z) = c

(
z +

σ2
Ω

2σ2
T

(
Lz2 − z3/3

))
,(4.19b)
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where the integration constant is

(4.20) c = Ttarget

/(
L+

σ2
Ω

σ2
T

L3/3

)
.

As noted before, the right-hand sides of (4.18) (with c given by (4.20)) give the biasing
functions for the direct timing and frequency contributions, respectively.

In the case of the NLS equation (constant dispersion), (2.32) yields the ratio of the vari-
ances explicitly as σ2

Ω/σ
2
T = A4/(9π2). The functional dependence of the optimal biasing

function in the general case, however, is exactly the same as in the constant dispersion case,
the only difference between the two cases being the precise proportion of direct timing and in-
direct frequency biasing (as shown by (4.18)). Therefore, since the case of constant dispersion
was discussed in [30], we will also omit further discussion of time biasing.

4.4. Biasing across all amplifiers for phase changes. The optimal biasing problem for
the phase is not conceptually different from those for the other soliton parameters. The
calculations, however, turn out to be the most complicated among the four cases.

The mean phase Φ evolves according to (2.18b). Note, however, that, among the terms
in the right-hand side, changes in Ω2 and 〈e−iΘy

T
, S〉Ω are second-order in the noise, while

changes in A2 are first-order in the noise, because Ω(0) = 0 while A(0) �= 0. Motivated by
these considerations, we neglect the terms Ω2/2 and 〈e−iΘy

T
, S〉Ω in (2.18b). That is, we

introduce the auxiliary quantity

(4.21) φ(z) = Φ(z)−
∫ z

0

(
Ω2/2− 〈e−iΘy

T
, S〉Ω) dz,

and we then consider the optimal biasing problem for φ(z). Using (2.18b) in (4.21) then, we
simply have

(4.22)
dφ

dz
=

1

2
A2 +

〈eiΘy
Φ
, S〉

〈y
Φ
, yΦ〉 .

Equation (4.22) shows that, similarly to the case of timing changes, changes in the soliton
phase result both from direct phase perturbations and by amplitude-induced phase pertur-
bations via the coupling between amplitude and phase due to Kerr nonlinearity. This is the
well-known Gordon–Mollenauer effect [14]. Thus, if we seek to induce larger-than-normal
phase changes, we need to bias both the soliton phase directly and the soliton amplitude.

It should be noted that, while substituting φ(z) for Φ(z) greatly simplifies the optimal
biasing problem, its use can be justified a posteriori. Indeed, the ISMC simulations discussed
in section 5 show that the uncertainties in the reconstructed tails of the noise-induced PDF
of the actual output phase are compatible to those for the other soliton parameters, thereby
suggesting that our choice of biasing is optimal for the phase as well.

In the case of noise, (4.22) and the first equation of (2.18) imply the following changes of
amplitude and phase parameters from one amplifier to the next:

(4.23) An+1 = An +ΔAn+1, φn+1 = φn +
1

2
zaA

2
n +Δφn+1,
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where ΔAn+1 is the amplitude change and Δφn+1 is the direct phase change. Recall that the
optimal biasing at a single amplifier is known and given by (3.6). Thus the most likely noise
realizations that produce the given values of ΔAn+1 and Δφn+1 have a mean that equals the
following optimal biasing function:

(4.24) bn+1 = ΔAn+1

〈yA, yA〉
‖y

A
‖2 y

An
+Δφn+1

〈yΦ, yΦ〉
‖y

Φ
‖2 y

Φn
.

Taking the continuum limit za → 0 as before, and using (4.22) and the first equation of (2.18),
the optimal biasing function becomes

(4.25) b(t, z) =
〈yA, yA〉
‖y

A
‖2 Ȧ y

A
+

〈yΦ, yΦ〉
‖y

Φ
‖2 (φ̇−A2/2) y

Φ
.

(Note that, similarly to section 4.3, the direct phase biasing Δφn+1 is given not by φ̇ za but
by (φ̇ − A2/2) za.) Again, minimizing the sum of the L2-norm of the biasing function over
all amplifiers is equivalent in the continuum limit to finding functions A(z) and φ(z) that
minimize the functional

(4.26) J [A,φ] =

∫ L

0

[
1

σ2
A

Ȧ2 +
1

σ2
Φ

(
φ̇−A2/2

)2]
dz.

The Euler–Lagrange equations associated with φ and A are, respectively,

d

dz

[
1

σ2
Φ

(φ̇−A2/2)

]
= 0,(4.27a)

2
d

dz

[
1

σ2
A

Ȧ

]
− ∂

∂A

[
1

σ2
A

Ȧ2 +
1

σ2
Φ

(φ̇−A2/2)2
]
= 0.(4.27b)

Equation (4.27a) yields immediately

(4.28) φ̇−A2/2 = c σ2
Φ,

which, in turn, when substituted into (4.27b), yields

(4.29) 2Ä
1

σ2
A

+ Ȧ2 ∂

∂A

[
1

σ2
A

]
+ c2

∂

∂A

[
σ2
Φ

]
+ 2cA = 0.

The system composed of (4.29) and (4.28), together with the boundary conditions A(0) = Ao,
Ȧ(L) = 0, φ(0) = 0, and φ(L) = φtarget, describes the optimal amplitude and phase paths
around which to bias the ISMC simulations. Note that, as in section 4.3, the boundary
condition Ȧ(L) = 0 is natural because an amplitude change at z = L would not result in an
additional phase change since amplitude-induced phase changes accumulate with distance.

When c = 0, (4.29) can be integrated to obtain (after use of the boundary conditions) the
constant solution A(z) = Ao. Thus, c = 0 corresponds to the case of no biasing being applied.
When c �= 0, however, one must solve (4.29) numerically. This can be done using a relaxation
method, as discussed in Appendix C, or, alternatively, a numerical continuation software such
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Figure 3. Optimal paths that the amplitude (left) and phase (right) take to reach larger- or smaller-than-
normal noise-induced output phase values of φ at z = 1 for the same total noise norm with different values of
map strength. The dotted lines show the unperturbed amplitude and phase paths. The dashed lines show solutions
to (4.28)–(4.29) where σ2

A and σ2
φ are replaced with large-s approximations as described in Appendix D. Note

that the dashed line in the right figure lies on top of the phase path for s = 4. Colors are the same as in
Figure 2.

as XPP/AUTO [10]. In either case, different output phases can be targeted by solving (4.29)
exactly in the case c = 0 and then extending the solution set by varying c. For the large map
strength case, σ2

A and σ2
Φ are well approximated by monomials in A. Appendix D describes

this approximation, the resulting equation, and its solution(s) in detail. We will refer to
solutions of this approximate equation as “large-s” amplitude and phase paths.

In the constant dispersion case, use of (2.27) and (2.28) simplifies (4.29) to

(4.30) Ä− 1

2A
Ȧ2 − c2

π2 + 12

18A
+ 2cA2 = 0,

which agrees with our previous results [37]. Note, however, that even (4.30) must be integrated
numerically when c �= 0.

Figure 3 shows the optimal paths A and φ for s = 0, 1, 4, 10 with the same total noise
norm. Also plotted in Figure 4 is the output phase as a function of the total noise norm where
that norm is computed by evaluating the functional J [A,φ] (4.26) with the optimal paths
of A and φ (which are plotted in Figure 3). Note that as the map strength increases, one
must bias the noise harder (i.e., the minimum J [A,φ] is larger) in order to achieve the same
output phase. This demonstrates the robustness of dispersion-managed solitons to direct and
amplitude-induced phase distortion.

When the above calculation is reduced to the constant dispersion case, we once again
recover the result of [30, 37]. It is worth mentioning, however, that the direct phase biasing
is not constant in z, unlike the case of constant dispersion and unlike the case of direct time
biasing in section 4.3.

5. Numerical simulations and results. We now describe how the results of section 4
can be used to implement IS for the DMNLS equation and in turn to compute the PDF of
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Figure 4. The output value of phase, Φ(L), as a function of the total noise norm. Colors and parameters
are the same as in Figure 3.

the dispersion-managed soliton parameters at the output as a result of noise. When seeking
larger-than-normal deviations of a parameter Q, one must perform the following steps at each
map period:

1. Recover the underlying dispersion-managed soliton from the noisy signal.
2. Obtain the linear modes and adjoint modes of the linearized DMNLS around the given

dispersion-managed soliton.
3. Generate an unbiased noise realization, shift its mean with the appropriately scaled

adjoint modes, and update the likelihood ratio.
4. Add the noise to the pulse, and propagate the new noisy signal to the next map period.

One then repeats this process until the signal reaches the output. Note that, to induce a larger
than normal parameter change, the noise is biased by concentrating the MC samples around
bn(t). That is, we take νn,biased(t) = bn(t) + νn(t), where bn(t) is the optimal biasing function
determined in sections 3 and 4 and νn(t) is an unbiased white-noise process satisfying (2.3).

For the simulations described next, we combined several thousand ISMC samples gener-
ated with a few different biasing targets, using multiple IS [7] in order to reconstruct the PDF
of the quantity of interest.

We performed studies on two physical systems. In system (a) we sought large output
amplitude changes, while in system (b) we sought large output phase changes. (As men-
tioned earlier, we omit performing simulations for frequency and timing since the biasing
choices for frequency and for timing are the same as for the NLS equation, which has already
been demonstrated in [29, 30].) Amplitude deviations are of course important for systems
using amplitude-shift-keyed formats. Similarly, phase deviations are important for phase-
shift-keying formats. In both cases we chose system parameters based on realistic values for
optical fiber communication systems. (Typical values of system parameters for the DMNLS in
femtosecond lasers can be obtained from [34].) We took a piecewise constant dispersion map
with an average dispersion of 0.15 ps2/km and a map strength s = 4. We set the unit time
to 17 ps, and we used the resulting dispersion length of 1,923 km to normalize the distance z,
resulting in d̄ = 1. We considered amplifiers spaced every 100 km (resulting in za = 0.052).D
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Table 1
Physical system parameters for the numerical simulations.

System Distance Na Loss coeff Unit/peak Spontaneous Optical Noise
power emission factor SNR variance

(a) 4000 km 40 0.21 dB/km 2.96mW 1.5 13.8 1.873 · 10−3

(b) 6000 km 60 0.25 dB/km 3.51mW 1.65 9.3 9.486 · 10−4
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Figure 5. (Left) PDF of dispersion-managed soliton amplitude. Solid curve: Results from ISMC simulations
of the DMNLS with 70,000 samples. Dots: Results from standard MC simulations of the NLS equation with
dispersion management with 300,000 samples. Dashed curve: Gaussian fit to that simulation. (Right) PDF
of output phase. Solid curve: Results from ISMC simulation of DMNLS with 50,000 samples. Dots: Results
from standard MC simulations of the NLS equation with dispersion management with 250,000 samples. Dashed
curve: A Gaussian PDF fit to mean and variance of ISMC simulation. Dashed-dot curve: ISMC simulations
of the noise-driven SDEs (2.18b). Note how unbiased MC simulations of the NLS equation with dispersion
management clearly deviate from the Gaussian but agree well with ISMC simulations of the DMNLS as far
down in probability as the unbiased simulations can accurately reach.

We also set the dispersion map period to be aligned with them. The remaining system param-
eters for both systems are given in Table 1. We took a nonlinear coefficient of 1.7 (W·km)−1,
and we used the power needed to have ḡ = 1 (which depends on the fiber loss; see Table 1) to
normalize pulse powers. Note that the local dispersion is large in magnitude, but the average
dispersion is small.

Even though at each map period the noise added induces only a small change in the
dispersion-managed soliton parameters, these small changes can accumulate into large changes
at the output resulting in a significantly distorted signal. Note that the linearized DMNLS is
used only to guide the biasing. That is, for each individual sample in the ISMC simulations,
the full DMNLS is solved to propagate the signal. In other words, use of IS enables full
nonlinear simulation of large, noise-induced parameter changes. For amplitude biasing, the
optimal paths become closer to linear as s increases. It was demonstrated in [30] that linear
biasing works well for NLS, that is, for s = 0.

Figure 5(left) shows the PDF of the dispersion-managed soliton output energy in sys-
tem (a), as computed from ISMC simulations of DMNLS (solid line), from standard MC
simulations of the original NLS with dispersion management (dots), and a Gaussian fit toD
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them (dashed line). The PDFs generated from ISMC simulations of DMNLS and standard
MC simulations of NLS both agree very well with each other as far down in probability as the
unbiased MC simulations can reach. This comparison provides a further strong validation of
DMNLS as a model of dispersion-managed lightwave systems and suggests that amplitude-
jitter in dispersion-managed systems with large map strength is nearly Gaussian distributed.

Figure 5(right) shows the PDF of the dispersion-managed soliton output phase in sys-
tem (b) as computed from ISMC simulations of DMNLS (solid blue line). Also plotted are
MC simulations of the NLS with a varying dispersion coefficient (red dots), a Gaussian fit to
those simulations (black dashed line), and an ISMC simulation of the parameter SDEs (2.18b)
(green dashed-dot line). The value of the PDF corresponding to π deviations from the mean
output phase is a quantity of interest in femtosecond lasers since any phase deviation beyond
that value would represent a phase slip. Figure 5(right) shows that the Gaussian approxima-
tion to the phase PDF near π can be off by several orders of magnitude. Note that the phase
of the dispersion-managed soliton in Figure 5(right) is obtained from the filtered output pulse.
Note also that numerical estimates of the PDF at negative phase deviations did not seem to
converge as quickly.

Both figures in Figure 5 show excellent agreement between the noise-perturbed DMNLS
equation (2.8a) and the noise-perturbed NLS equation with varying dispersion (2.1). That
is, the distributions for both amplitude and phase agree well as far down as the tails can be
computed using standard MC. An even stronger result, however, is that the simulations show
pathwise agreement between noise-perturbed DMNLS and noise-perturbed NLS with varying
dispersion for both the amplitude (compared at amplifiers) and phase. That is, the phases
and amplitudes agree for each individual MC sample as a function of noise across the whole
transmission line. These results, which may appear rather surprising given the “softness”
of the phase, the variations in amplitude within the dispersion map for NLS with varying
dispersion, and the complexity of the system (nonlinearity, dispersion, noise, large deviations,
etc.), provide additional confirmation of the validity and robustness of the DMNLS equation
in capturing the dynamics of dispersion-managed systems. Its usefulness is also increased by
the availability of tools such as the perturbation theory that we used in this work.

The phase PDF presented in Figure 5 is centered around the computed mean. There is a
discrepancy between the theoretical and simulated values of the mean phase. This discrepancy
also appears for the NLS equation (i.e., for s = 0) [30] and is not well understood. As with
the NLS equation, the discrepancy does not affect the variance or the shape of the PDF. It
is also worth noting that this effect is quadratic in the noise variance, and therefore it is not
picked up by the equations of perturbation theory in section 2.2, which is carried out only to
first order. As a result, the discrepancy does not affect the method or the results presented
here. It also does not affect the biasing calculation. We are still biasing toward the most
likely path to some total phase change. The only difference is that the total change we get
at the output is slightly more than what we biased for. This does not present a problem for
our simulations since we sought to compute the phase PDF over a wide range of phase values,
and thus we targeted several different output phases within the ISMC simulations.

6. Conclusions. In summary, we have outlined perturbation theory for the DMNLS equa-
tion and used that theory to guide ISMC simulations which we employed to directly calculate
PDFs of phase and amplitude in dispersion-managed systems. We then compared these PDFsD
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to results from the original, unaveraged system. This comparison between the PDFs arising
from simulations of the DMNLS and of the original NLS with varying dispersion provides a
further significant validation of DMNLS as a model for dispersion-managed systems.

We should also mention that the PDF of noise-induced phase jitter was also addressed
in [39]. That work, however, was limited to the NLS equation. Also, the results of the MC
simulation in that work go down to only 10−6 in probability, which does not provide a real
validation of the method, since one can often reach intermediate results with suboptimal
biasing, as demonstrated in [7]. A more accurate test of the method is whether the coefficient
of variation (as reflected visually in the smoothness of the curves for the PDF) remains small
across the whole range of values of the PDF, i.e., arbitrarily far down as one wants to go into
the tails. Visually, that is precisely what happens in our case, and this is therefore a good
indication that our choice of biasing is indeed near optimal.

We believe that the methods described in this work will provide one of the steps that will
enable the accurate computation of failure rates in dispersion-managed systems affected by
noise, and we plan to work on such computations in the near future.

Appendix A. One-parameter family of shape functions for dispersion-managed solitons.
The nonlinear integral equation (2.14), whose solution yields the shape of the dispersion-
managed solitons, contains three free parameters, d̄, s, and A. The scaling invariance of the
DMNLS equation, however, implies that, for each fixed value of d̄, the dispersion-managed
solitons can be described in terms of just a one-parameter family of shape functions, as we
show next.

Let u(t, z;A, s) = f(t;A, s) eiA
2t/2 be a stationary dispersion-managed soliton, and let

(A.1) f̂(ω;A, s) =

∫ ∞

−∞
e−iωtf(t;A, s) dt.

Then f̂ solves the nonlinear integral equation (2.14), which with (2.12) becomes

(A.2) 2π2
(
A2 + d̄ω2

)
f̂(ω) =

∫∫
f̂(ω+ω′)f̂(ω+ω′′)f̂

∗
(ω+ω′+ω′′)

sin(sω′ω′′)
sω′ω′′ dω′dω′′.

Now, for all s �= 0, let y =
√
sω and f̂(ω;A, s) = Ψ̂(

√
sω;A2s). Then Ψ̂(y;μ) solves

(A.3) 2π2
(
μ+ d̄y2

)
Ψ̂(y) =

∫∫
Ψ̂(y+y′)Ψ̂(y+y′′)Ψ̂

∗
(y+y′+y′′)

sin(y′y′′)
y′y′′

dy′dy′′.

The one-parameter family of functions Ψ̂(y;μ) or its inverse Fourier transform

(A.4) Ψ(x;μ) =
1

2π

∫ ∞

−∞
eixyΨ̂(y;μ) dy

provides the shape of the dispersion-managed solitons for all values of A and s. It is easy to
show that, for all values of A and s, it is

(A.5) f(t;A, s) =
1√
s
Ψ(t/

√
s;A2s).
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Figure 6. One-parameter family of shape functions of dispersion-managed solitons.

The transformation from ω to y becomes singular at s = 0. The apparent discontinuity of
(A.5) at s = 0 is removable, however. To see this, we can compute the limit of the right-hand
side of (A.5) as s → 0 using the inverse transformation (namely, from y to ω) and expressing
the shape functions as Ψ̂(y;μ) = f̂(

√
s y;

√
μ/s, s), where f̂ solves (A.2). In the limit s → 0

we then obtain f̂(ω;A, 0) = π sech[πω/(2A)], which yields simply f(t;A, 0) = A sechAt. Note
also that no problems exist at A = 0, since when A = 0 (A.2) yields the trivial solution for
all s.

The above results allow one to precompute the one-parameter family of solutions only once
with high accuracy and then rescale it as needed to obtain the desired shape in all situations.
For example, one can compute f(t; 1, s) for all values of s, obtaining the family of shapes
shown in Figure 6. Then, for each value of A and s, one can use (A.5) to obtain

(A.6) f(t;A, s) = Af(At; 1, A2s).

The norms and inner products of the linear modes can be obtained in a similar way. Indeed,

‖y
A
‖2/A = E/A =

1

μ
‖Ψ‖2, ‖y

Ω
‖2/A =

1

μ3

∥∥∥∥∂Ψ∂x
∥∥∥∥
2

,(A.7a)

where μ = A2s and Ψ = Ψ(x;μ). Similarly,

‖yA‖2A =
1

μ

∥∥∥∥Ψ+ x
∂Ψ

∂x
+ 2μ

∂Ψ

∂μ

∥∥∥∥
2

, ‖yΩ‖2A = μ‖xΨ‖2.(A.7b)

Indeed, this is how the curves in Figure 1 were produced.

Appendix B. Numerical integration of the DMNLS equation. Numerical calculations
of the pulse phase are more sensitive compared to those of amplitude, frequency, or position.
Hence, careful choice of the numerical method is crucial in order to obtain reliable results. As
shown in [1, 23], the DMNLS equation (2.8a) can be written as

(B.1)
∂u

∂z
=

i

2
d̄
∂2u

∂t2
+ iN [u],
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where the nonlinear term is N [u] = F−1
[
N̂ [û]

]
, with

(B.2) N̂ [û] =
〈
eiC(ζ)ω2/2F[|q|2q]〉,

where F is the Fourier transform operator (defined by (2.7)), the angled brackets denote
average with respect to ζ over one period of the dispersion map, and q(t, z, ζ) is obtained
from u(t, z) and C(ζ) via (2.5). (Of course, for constant dispersion (that is, for the NLS
equation) it is C(ζ) = 0, and the average becomes an identity.) Thus, the double integral in
the DMNLS equation can be efficiently evaluated using fast Fourier transforms (see [23] for
further details). Once the integral is computed, the time stepping can be performed using
any of the numerical methods for partial differential equations (PDEs). (The role of “time”
here is of course played by the propagation variable z.) Several methods are accurate enough
to reproduce the numerical results of [23].

Equation (B.1) is a semilinear PDE, and its numerical integration is a stiff problem be-
cause of the second derivative in the right-hand side. To overcome this difficulty, we use an
integrating factor (IF) approach [11]. Introducing

v̂(ω, z) = eid̄ω
2z/2û(ω, z),(B.3a)

we have

∂v̂

∂z
= ieid̄ω

2z/2N̂
[
e−id̄ω2z/2v̂

]
.(B.3b)

Instead of solving the DMNLS equation directly, we then numerically integrate (B.3b), and,
at each value of z, we recover u(t, z) by trivially inverting (B.3a). As shown in [27] for various
other PDEs, this approach removes the stiffness from the problem by treating the linear term
exactly. The actual time stepping for (B.3b) is performed using a fourth-order Runge–Kutta
method. As documented in [11], the IF-RK4 approach yields comparable efficiency to other
numerical methods with the same order of accuracy.

An alternative approach with comparable efficiency to IF is a split-step Fourier method.
Note, however, that, for s �= 0, such an approach is not as convenient as in the case of constant
dispersion (s = 0). This is because, unlike what happens for the NLS equation, when s �= 0, it
is not possible to integrate the nonlinear part exactly. Therefore, one would have to integrate
the nonlinear part approximately (e.g., using a Runge–Kutta method, as was done in [11] for
the Korteweg–deVries equation).

Appendix C. Relaxation method for the optimal biasing problem for the phase. For
simplicity, we just present the method in the case s = 0, that is, for the NLS equation. The
method, however, works with trivial modifications for the DMNLS equation.

Recall that the optimal biasing for the phase is obtained by solving the boundary value
problem (BVP) given by the second-order ordinary differential equation (ODE)

(C.1) Ä− Ȧ2

2A
− bc2

A
+ 2cA2 = 0

subject to the boundary conditions

(C.2) A(0) = 1, Ȧ(L) = 0,
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where b/A = (12 + π2)/18A is the variance of the source term in the phase ODE and c is an
arbitrary constant. Once A(z) is known, φ(z) is recovered by solving the auxiliary ODE

(C.3) φ̇ =
1

2
A2 +

bc

A
,

plus the initial condition φ(0) = 0. The value of c is related to that of the output phase, φ(L).
In particular, the case c = 0 has the unique solution A(z) = 1. (This is true even when s �= 0.)

To solve the above BVP, we use a relaxation method. First, it is convenient to convert
the problem into a first-order system. Let x = (x, y)t, where x = A and y = A′. The ODE
(C.1) then yields

(C.4) ẋ = f(x), f(x) =

(
y

y2/2x+ bc2/x− 2cx2

)

together with the boundary conditions x(0) = 1 and y(L) = 0. Now we discretize the system
of ODEs. We partition the interval [0, L] into {zo, . . . , zM}, with zm = mΔz for m = 0, . . . ,M
and Δz = L/M . Let xm = x(zm), and introduce the 2 × (M + 1) matrix X = (x0, . . . ,xM )
which collects the values of the dependent variables at all grid points. We then approximate
(C.4) with

(C.5) Em(X) = 0, m = 1, . . . ,M,

where Em(X) is the discrete version of x′ = f(x) evaluated at z = zm:

(C.6) Em(X) = xm − xm−1 − (Δz/2)
(
f(xm) + f(xm−1)

)
.

The above are a system of 2M nonlinear equations for the 2M unknowns x1, . . . , xM and
y0, . . . , yM−1. (Note that the boundary conditions for x(z) imply simply x0 = 1 and yM = 0.)
To solve this nonlinear system of equations, we use Newton’s method. Introduce the 2 ×M
matrix E(X) = (E1, . . . ,EM ), and expand E(X) in Taylor series as

(C.7) E(X +ΔX) = E(X) + JE(X)ΔX +O(ΔX2),

where JE(X) is the Jacobian matrix of E as a function of the 2M independent variables
x1, . . . , xM and y0, . . . , yM−1. (Note that there is a slight abuse of notation here, since X also
contains the quantities x0 and yM , which are fixed.) The requirement E(X +ΔX) = 0 then
yields, to leading order,

(C.8) ΔX = −(JE(X))−1E(X)

(again with a slight abuse of notation, since x0 and yM are unaffected by the iteration).
Componentwise, writing E = (Ejm) with j = 1, 2 and m = 1, . . . ,M and X = (Xjm) with
j = 1, 2 and 0 = 1, . . . ,M , we have
(C.9)(
JE(X)) jk

im =
∂Eim

∂Xjk
=

(
δ j
i − (Δz/2)

(
Jf (xm)

) j

i

)
δ k
m −

(
δ j
i + (Δz/2)

(
Jf (xm−1)

) j

i

)
δ k
m−1,

D
ow

nl
oa

de
d 

02
/2

7/
14

 to
 1

34
.4

8.
15

8.
19

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

458 ELAINE T. SPILLER AND GINO BIONDINI

where

(C.10) Jf (x) =

⎛
⎜⎜⎝
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

⎞
⎟⎟⎠ =

(
0 1

−y2/(2x2)− bc2/x2 − 4cx y/x

)
.

The implementation of this algorithm requires one to properly deal with the tensorial nature
of JE(X), but this can be done effectively using computer algebra packages such as MATLAB.

The case s �= 0 is slightly more complicated because we have only numerical representations
of the source variances. In this case, one can fit a fourth-order polynomial in A to each curve
and then proceed as above. The same approach can be used when employing numerical
continuation software such as XPP/AUTO.

Appendix D. Large map strength approximation of the optimal phase paths. The opti-
mal biasing problem for the phase requires that amplitude follows the second-order differential
equation (4.30), which is rewritten below for clarity, derived in section 4.4,

(D.1) 2Ä
1

σ2
A

+ Ȧ2 ∂

∂A

[
1

σ2
A

]
+ c2

∂

∂A

[
σ2
Φ

]
+ 2cA = 0,

where c is an arbitrary integration constant. The amplitude is subject to the boundary
conditions

(D.2) A(0) = Ao, A′(L) = 0.

Again, Φ(z) is obtained from A(z) by solving the auxiliary ODE φ′ = A2/2 + cσ2
Φ plus the

initial condition φ(0) = 0. The value of c is related to that of the output phase, φ(L), and the
case c = 0 has the unique solution A(z) = 1.

For large values of map strength, the variances of the source terms can be approximated
by monomial functions of A, and thus the optimal biasing equation can be written in terms
of the amplitude. Specifically, recall that σ2

Q = σ2‖y
Q
‖2/〈y

Q
, yQ〉2. For large map strengths

we approximate

(D.3) ‖y
A
‖2 = E(A, s) = k1A

2, ‖y
Φ
‖2 = k2, 〈y

A
, yA〉 = 〈y

Φ
, yΦ〉 = k3A.

This implies σ2
A = σ2k1/k

2
3 and σ2

Φ = σ2k2/(k3A)
2. Note that the constants, k1, k2, k3, depend

on the map strength. For the comparison plotted in Figure 3, we used the value s = 4.
The optimal biasing for the phase then simplifies into the BVP given by the ODE

(D.4) A′′ − bk2

A3
+ kA = 0,

where k = cσ2k1/k
2
3 and b = k1/k2. This ODE can be integrated once to give (A′)2+bk2/A2+

kA2 = 2k C, where the right-hand side is another arbitrary integration constant. (Note that
the above equation implies C = A2(L)/2 + bk/2A2(L).) This is a separable first-order ODE,
which can be conveniently written as

(D.5)
(AA′)2

2CA2 −A4 − bk
= k.
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The quantity

(D.6) Δ = 2CA2 −A4 − bk,

which is the denominator in the left-hand side of the ODE (D.5), must have constant sign
equal to that of k. This implies that C > max(bk, 0). This also means that the range of A is
limited to the following:

C −
√

C2 − bk < A2 < C +
√

C2 − bk when k > 0,(D.7a)

A2 > C +
√

C2 − bk when k < 0,(D.7b)

while for k = 0 it is simply A = Ao. We will consider the case k ≥ 0. (The case k ≤ 0 can be
handled in a similar way.) Letting e = A2 − C, (D.5) becomes simply

(D.8) e′/
√
Δ =

√
k,

where now Δ = C2 − bk − e2. Rescaling yet again by letting y = e/
√
C2 − bk, we obtain

y′/
√

1− y2 =
√
k, which is trivially integrated to give

(D.9) y(z) = sin
(√

kz + α
)
,

where α = arcsin(yo) and yo = (A2
o−C)/

√
C2 − bk. Without loss of generality, we can choose

the fundamental branch of the arcsine. So we have |α| ≤ π/2.
We now use the boundary condition at z = L obtaining

(D.10) cos
(√

kL+ α
)
= 0.

This condition fixes yo via α and therefore provides an equation that determines the integration
constant C. Explicitly, if [

√
kL/π] = n, we get α = (n+ 1

2)π −√
kL, implying

(D.11)
A2

o − C√
C2 − bk

= (−1)n cos
(√

kL
)
.

Note that when k = 0 we have n = 0, and the equation yields simply C = A2
o/2. The above

condition yields

(D.12) C2 sin2
√
kL− 2A2

oC + (A4
o + bk cos2

√
kL) = 0.

This is solved by C = C±, with

(D.13) C± =

[
A2

o ±
√

A4
o cos

2
√
kL− 1

4bk sin
2 2

√
kL

]
csc2

√
kL.

It is necessary to choose the branch C = C+ to achieve the output phase which the optimal
phase path reaches at z = L for s = 4 case in Figure 3.

The optimal amplitude path thus obtained is

(D.14) A(z) =

√
C +

√
C2 − bk sin

(√
kz + α

)
,
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with α = α(C) and C = C+. We can now substitute A(z) into the ODE for φ to find the
optimal phase path and the output phase as a function of c:

(D.15) φ′ = A2/2 + bc/A2.

The problem is thus reduced to quadratures. Explicitly, its solution is

(D.16) φ(z) = Cz/2− δ

2
√
k

[
cos(

√
cz + α)− cosα

]

+
2
√
bc

k

{
arctan

[
δ + C tan

(
1
2 (
√
kz + α)

)
√
bk

]
− arctan

[
δ + C tan

(
1
2α

)
√
bk

]}
,

where δ =
√
C2 − bk and C is as before. This yields φ(L) explicitly as a function of c. The

phase and amplitude paths which this approximation yields are plotted in Figure 3.
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