9,294 research outputs found

    Importance Sampled Stochastic Optimization for Variational Inference

    Get PDF
    Variational inference approximates the posterior distribution of a probabilistic model with a parameterized density by maximizing a lower bound for the model evidence. Modern solutions fit a flexible approximation with stochastic gradient descent, using Monte Carlo approximation for the gradients. This enables variational inference for arbitrary differentiable probabilistic models, and consequently makes variational inference feasible for probabilistic programming languages. In this work we develop more efficient inference algorithms for the task by considering importance sampling estimates for the gradients. We show how the gradient with respect to the approximation parameters can often be evaluated efficiently without needing to re-compute gradients of the model itself, and then proceed to derive practical algorithms that use importance sampled estimates to speed up computation. We present importance sampled stochastic gradient descent that outperforms standard stochastic gradient descent by a clear margin for a range of models, and provide a justifiable variant of stochastic average gradients for variational inference.Peer reviewe

    Patterns of Scalable Bayesian Inference

    Full text link
    Datasets are growing not just in size but in complexity, creating a demand for rich models and quantification of uncertainty. Bayesian methods are an excellent fit for this demand, but scaling Bayesian inference is a challenge. In response to this challenge, there has been considerable recent work based on varying assumptions about model structure, underlying computational resources, and the importance of asymptotic correctness. As a result, there is a zoo of ideas with few clear overarching principles. In this paper, we seek to identify unifying principles, patterns, and intuitions for scaling Bayesian inference. We review existing work on utilizing modern computing resources with both MCMC and variational approximation techniques. From this taxonomy of ideas, we characterize the general principles that have proven successful for designing scalable inference procedures and comment on the path forward
    corecore