7 research outputs found

    Linear multistep methods for optimal control problems and applications to hyperbolic relaxation systems

    Get PDF
    We are interested in high-order linear multistep schemes for time discretization of adjoint equations arising within optimal control problems. First we consider optimal control problems for ordinary differential equations and show loss of accuracy for Adams-Moulton and Adams-Bashford methods, whereas BDF methods preserve high--order accuracy. Subsequently we extend these results to semi--lagrangian discretizations of hyperbolic relaxation systems. Computational results illustrate theoretical findings

    High order semi-implicit multistep methods for time dependent partial differential equations

    Full text link
    We consider the construction of semi-implicit linear multistep methods which can be applied to time dependent PDEs where the separation of scales in additive form, typically used in implicit-explicit (IMEX) methods, is not possible. As shown in Boscarino, Filbet and Russo (2016) for Runge-Kutta methods, these semi-implicit techniques give a great flexibility, and allows, in many cases, the construction of simple linearly implicit schemes with no need of iterative solvers. In this work we develop a general setting for the construction of high order semi-implicit linear multistep methods and analyze their stability properties for a prototype linear advection-diffusion equation and in the setting of strong stability preserving (SSP) methods. Our findings are demonstrated on several examples, including nonlinear reaction-diffusion and convection-diffusion problems

    Implicit-Explicit multistep methods for hyperbolic systems with multiscale relaxation

    Get PDF
    We consider the development of high order space and time numerical methods based on Implicit-Explicit (IMEX) multistep time integrators for hyperbolic systems with relaxation. More specifically, we consider hyperbolic balance laws in which the convection and the source term may have very different time and space scales. As a consequence the nature of the asymptotic limit changes completely, passing from a hyperbolic to a parabolic system. From the computational point of view, standard numerical methods designed for the fluid-dynamic scaling of hyperbolic systems with relaxation present several drawbacks and typically lose efficiency in describing the parabolic limit regime. In this work, in the context of Implicit-Explicit linear multistep methods we construct high order space-time discretizations which are able to handle all the different scales and to capture the correct asymptotic behavior, independently from its nature, without time step restrictions imposed by the fast scales. Several numerical examples confirm the theoretical analysis

    Relaxation schemes for entropy dissipative system of viscous conservation laws

    Full text link
    In this paper, we introduce a hyperbolic model for entropy dissipative system of viscous conservation laws via a flux relaxation approach. We develop numerical schemes for the resulting hyperbolic relaxation system by employing the finite-volume methodology used in the community of hyperbolic conservation laws, e.g., the generalized Riemann problem method. For fully discrete schemes for the relaxation system of scalar viscous conservation laws, we show the asymptotic preserving property in the coarse regime without resolving the relaxation scale and prove the dissipation property by using the modified equation approach. Further, we extend the idea to the compressible Navier-Stokes equations. Finally, we display the performance of our relaxation schemes by a number of numerical experiments

    High order asymptotic preserving scheme for linear kinetic equations with diffusive scaling

    Full text link
    In this work, high order asymptotic preserving schemes are constructed and analysed for kinetic equations under a diffusive scaling. The framework enables to consider different cases: the diffusion equation, the advection-diffusion equation and the presence of inflow boundary conditions. Starting from the micro-macro reformulation of the original kinetic equation, high order time integrators are introduced. This class of numerical schemes enjoys the Asymptotic Preserving (AP) property for arbitrary initial data and degenerates when ϵ\epsilon goes to zero into a high order scheme which is implicit for the diffusion term, which makes it free from the usual diffusion stability condition. The space discretization is also discussed and high order methods are also proposed based on classical finite differences schemes. The Asymptotic Preserving property is analysed and numerical results are presented to illustrate the properties of the proposed schemes in different regimes

    Implicit explicit linear multistep methods for stiff kinetic equations.

    Get PDF
    We consider the development of high order asymptotic-preserving linear multistep methods for kinetic equations and related problems. The methods are first developed for BGK-like kinetic models and then extended to the case of the full Boltzmann equation. The behavior of the schemes in the Navier-Stokes regime is also studied and compatibility conditions derived. We show that, compared to IMEX Runge-Kutta methods, the IMEX multistep schemes have several advantages due to the absence of coupling conditions and to the greater computational efficiency. The latter is of paramount importance when dealing with the time discretization of multidimensional kinetic equations

    Discontinuous Galerkin Discretizations of the Boltzmann Equations in 2D: semi-analytic time stepping and absorbing boundary layers

    Get PDF
    We present an efficient nodal discontinuous Galerkin method for approximating nearly incompressible flows using the Boltzmann equations. The equations are discretized with Hermite polynomials in velocity space yielding a first order conservation law. A stabilized unsplit perfectly matching layer (PML) formulation is introduced for the resulting nonlinear flow equations. The proposed PML equations exponentially absorb the difference between the nonlinear fluctuation and the prescribed mean flow. We introduce semi-analytic time discretization methods to improve the time step restrictions in small relaxation times. We also introduce a multirate semi-analytic Adams-Bashforth method which preserves efficiency in stiff regimes. Accuracy and performance of the method are tested using distinct cases including isothermal vortex, flow around square cylinder, and wall mounted square cylinder test cases.Comment: 37 pages, 11 figure
    corecore